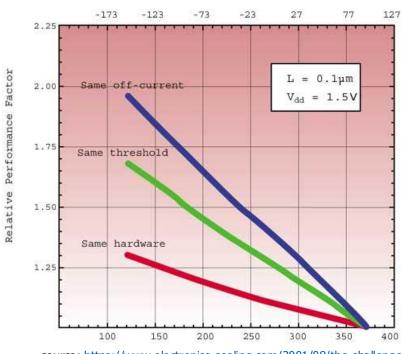

Implications of Full-System Modeling for Superconducting Architectures

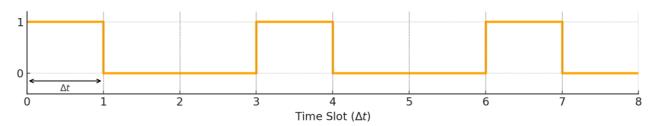
Kunal Pai, Mahyar Samani, Anusheel Nand & Jason Lowe-Power

Introduction

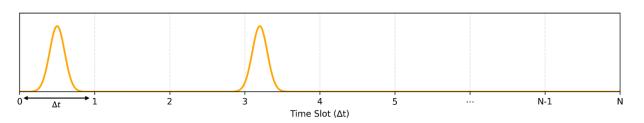

source: https://www.electronics-cooling.com/2001/08/the-challenge-of-operating-computers-at-ultra-low-temperatures/

CMOS -> high leakage currents, reduced perf. at high temp

CryoCMOS and superconductors -> low temp., high perf., high energy efficiency


Introduction

source: https://www.electronics-cooling.com/2001/08/the-challenge-of-operating-computers-at-ultra-low-temperatures/


CMOS -> high leakage currents, reduced perf. at high temp

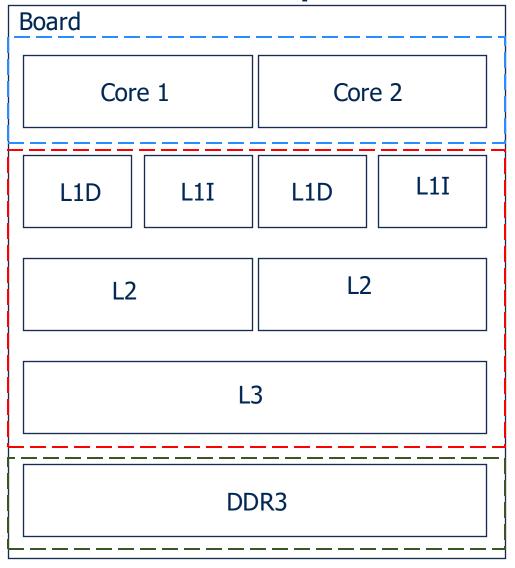
CryoCMOS and superconductors -> low temp., high perf., high energy efficiency

Cryogenic CMOS: 123 K, 4 GHz clk.

Same logic as regular CMOS

Superconducting electronics: 10 K, max. 100 GHz clk.

 Logic based on detection of pulse at time steps (race logic)



Contributions

- First full-system study on CryoCMOS & Superconductors
 - gem5: cycle-level simulator @ v23.1
 - Diverse workloads: SPEC CPU2006 (ref), BFS, PR, CC
 - Theoretical and realistic architectures

Theoretical Super- & Cryo- Architecture Modeling

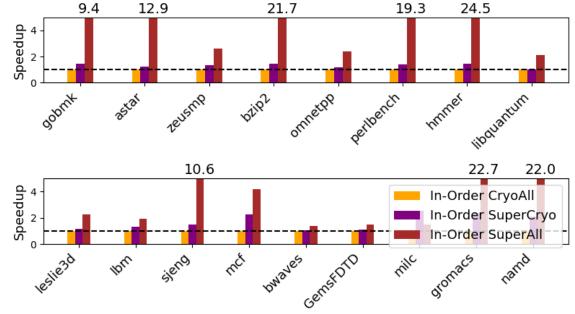
Cryo (4 GHz) / Super (100 GHz)

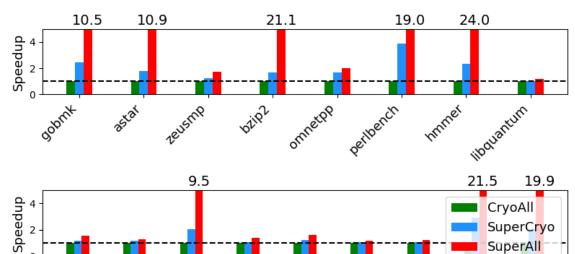
OOO (BOOM) / In-order (HiFive Unmatched)

Cryo (4 GHz) / Super (100 GHz)

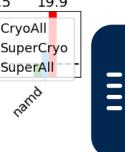
L1 32 kB, L2 512 kB, L3 16 MB

Room temp. (800 MHz)


Mem. hard to scale in cryo/super


Performance Improvement

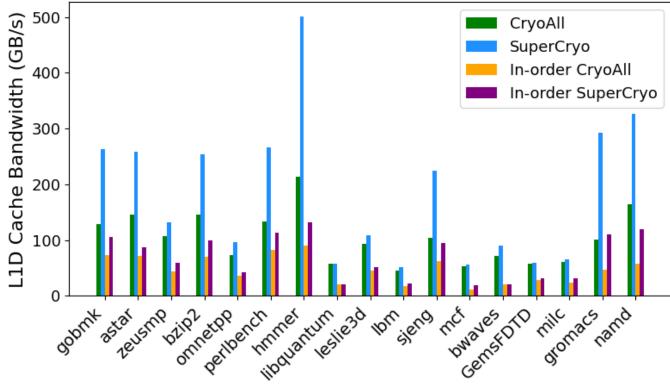
- High potential bar:
 - but low freq. caches are bottleneck
- More abs. impact on in-order
 - Latency hiding less important
- Memory-intensive workloads:
 - minimal improvement
- Main bottleneck:
 - Room temp. DRAM



Speedup of Out-of-Order Configs over CryoAll

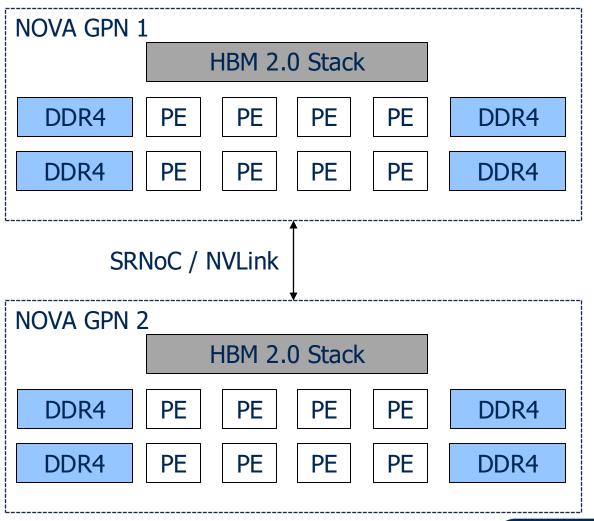
Milc

Performance Improvement


- Take away:
 - Big potential benefits, but only for some workloads: Accelerator, Interconnect

Data Movement

- CryoAll and SuperCryo (inorder and OOO) - realistic configs
- Max. 500 GB/s for L1D Cache in SuperCryo configuration.
 - Reasonable for optics!


L1D Cache Bandwidth for Full-Sized Workloads

Interconnect Model

- SRNoC: Circuit-switched, statically-scheduled
- Workloads: BFS, PR and CC
- Graph size: 12 k nodes,
 60 k edges

SRNoC Results

Workload	Slowdown	NVLink	SRNoC	Efficiency
		Energy (J)	Energy (J)	Gain
BFS	1.05×	1.06×10 ⁻⁶	2.95×10 ⁻⁸	35.98×
CC	1.31×	1.31×10 ⁻⁴	1.78×10 ⁻⁶	73.60×
PR	1246.28×	2.32×10 ⁻⁶	6.44×10 ⁻⁵	0.04×

- All workloads: <u>slowdown</u>
- Narrow int data paths (8-bit): BFS and CC <u>low</u> slowdown, <u>high</u> energy efficiency
- Float transmissions (32-bit): PR <u>high</u> slowdown, <u>low</u> energy efficiency

Conclusion

- Compute-intensive workloads: gains as high as 24x
 - Limited by CMOS DRAM
- General-purpose CPUs: limited benefit
- Best use case: narrow-path, domain-specific accelerators (graph / ML)
- Future: Explore superconducting memory and SERDES conversion penalties

