

Beyond Guess and Check: Quantifying the Fidelity of Proxy Applications

Si Chen¹, Simon Garcia de Gonzalo², Omar Aaziz², Jeanine Cook², **Avani Wildani**^{1,3}

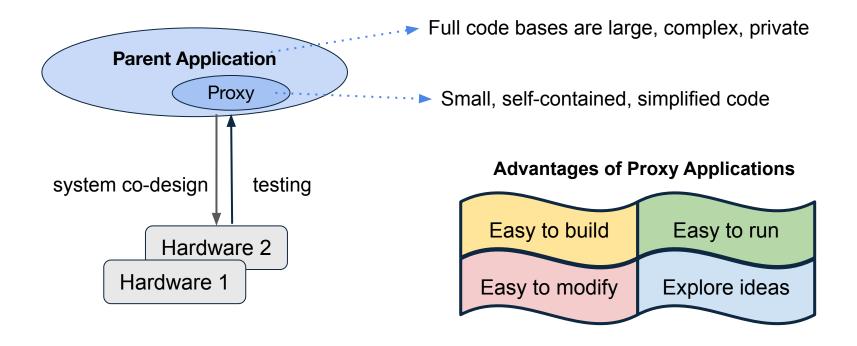
PMBS'25, held in conjunction with SC'25 November 2025

¹ Emory University

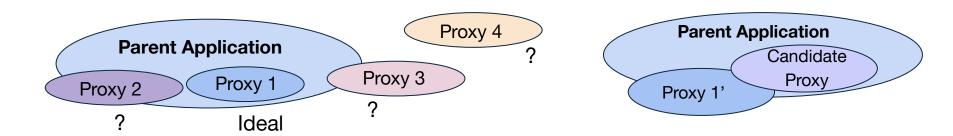
² Sandia National Laboratories

³ Cloudflare

Background: Proxy Applications for co-design



Motivation: Fidelity of Proxy Applications



Fidelity: the degree of accuracy with which a proxy application mimics the behavior and performance characteristics of its parent application.

Why quantify the fidelity? Poor fidelity lead to suboptimal architectural decisions

Motivation

Previous Work:

- Limited number of applications
- Limited features or metrics
- Qualitative analysis
- Lack of standard metrics for proxy

Three research questions:

How to quantify similarity?

How to **select** a representative set of proxies?

How to effectively identify the discrepancies?

We introduce **Calder**, a tool kit that implements **similarity algorithms** to compare application behaviors, using **Laplacian scores** and a correlation filter to select the **most important** application behavior features.

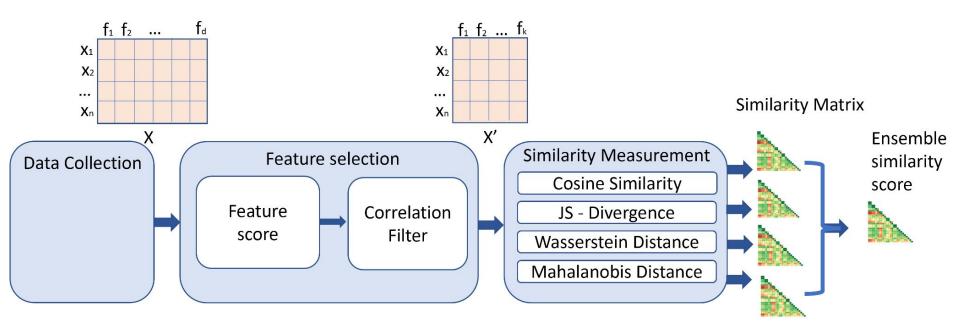
Key Contributions

- Quantitative characterization of fidelity across a broad range of proxy and parent application pairs.
- Advanced feature selection techniques that reduce data size by up to 95%.
- Usage of kernel function similarity as ground truth to define similarity threshold.

Outline

- Background and Motivation
- Calder Architecture
- How to quantify the similarity?
- How to select a representative set of proxies?
- How to effectively identify the discrepancies?
- Conclusion

Calder Architecture



Data Collection

- PAPI events collected by LDMS infrastructure.
- 600+ hardware events
- 15 subgroups according to event categories (e.g., Dispatch Pipeline, Instruction Cache)
- Input size: same problem or 50% memory usage
- MPI-only mode, 128 ranks on 4 nodes average, end time point accumulated value
- Normalized with CPU cycles

Hardware Platforms

- Intel Skylake
- IBM Power9

To ensure robustness and reliability, each subgroup was run five times for each application, totaling over 3,000 runs.

Data Collection: Applications

Table 1: Proxy/Parent and Control Apps

Proxy	Parent	Other apps		
ExaMiniMD	LAMMPS	AMG2013		
miniQMC	QMCPACK	Castro		
miniVite	Vite	Laghos		
Nekbone	Nek5000	PENNANT		
PICSARlite	PICSAR	SNAP		
SW4lite	SW4	HPCG benchmark		
SWFFT	HACC	HPCC benchmark		
XSBench	OpenMC			

Data Collection: Applications

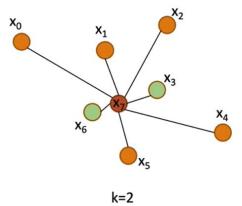
An application is represented by a long **vector** with multiple events.

		BR_INST_RETIRED:ALL_BRANCHES	BR_INST_RETIRED:CONDITIONAL	BR_INST_RETIRED:FAR_BRANCH	
>	ExaMiniMD	0.102941117	0.084736321	3.04E-06	
•	LAMMPS	0.166040571	0.132466767	5.41E-06	
•	sw4lite	0.066925525	0.042952159	1.14E-05	
-	sw4	0.060973991	0.039039782	1.05E-05	

. . .

Feature Selection: Laplacian Score

Laplacian score builds a nearest neighbor graph for application points and seeks those features that respect local graph structure to preserve the similarity structure.



Step 1: Derive the nearest neighbor graph

	X0	X1	X2	ХЗ	X4	X5	X6	X7
X0								0
X1								0
X2								0
ХЗ								S 3.7
X4								0
X5								C
X6								S _{6.7}
X7	0	0	0	S7.3	0	0	S7.6	0

Step 2: Calculate the Laplacian

$$L_r = \begin{array}{c} \text{neighbor difference for} \\ \text{feature } r \\ \hline \\ \text{Variance of feature } r \end{array}$$

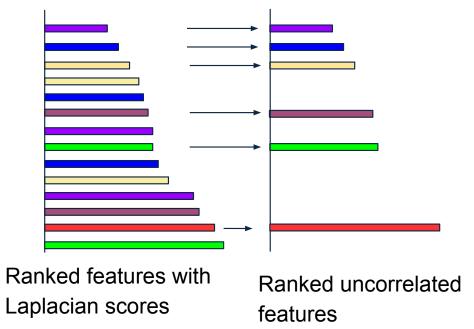
The **smaller** the Laplacian score is, the **more important** the feature is!

Feature Selection: Correlated Features

L ranks features by importance ...but does not consider the relationship between features.

Pearson Correlation Coefficient (PCC) measures the linear correlation between two variables:

$$ho_{X,Y} = rac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$



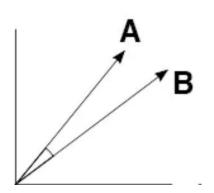
Similarity and Distance

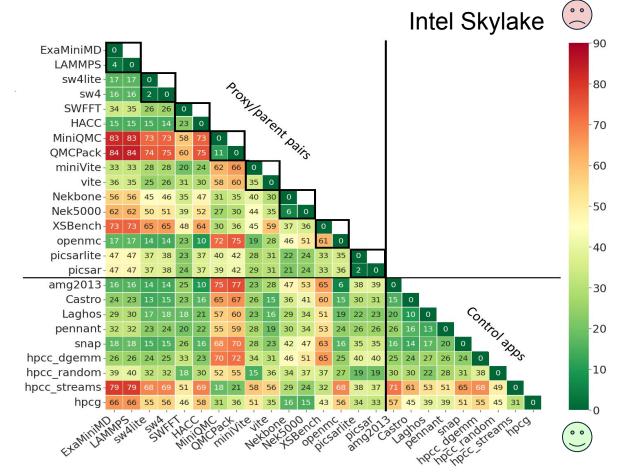
To evaluate the similarity between applications, we calculate the pairwise distance for each application pair using four representative similarity measurement methods.

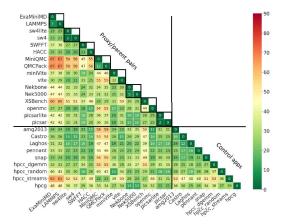
- Cosine similarity
- Jensen-Shannon (JS) divergence
- Wasserstein Distance (WD)
- Mahalanobis Distance (MaD)

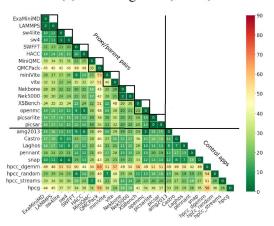
Cosine Similarity

Similarity 0 score

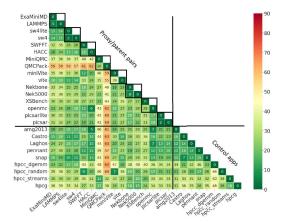




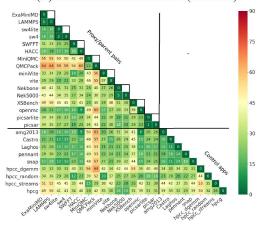




(c) Mahalanobis distance $(10\times)$



(b) Wasserstein distance $(1000 \times)$



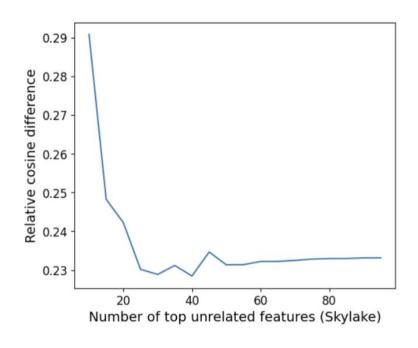
(d) Similarity for ensemble methods

Similar proxy/parent pairs maintain consistency across similarity algorithms.

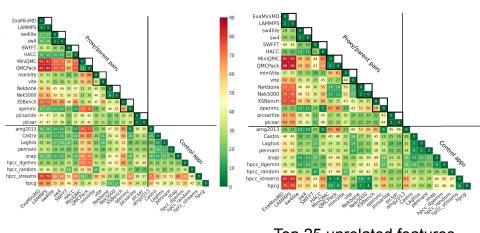
Dissimilarities are algorithm-dependent.

We select **cosine similarity** for validating fidelity.

Feature sensitivity and Top Features



Cosine Similarity



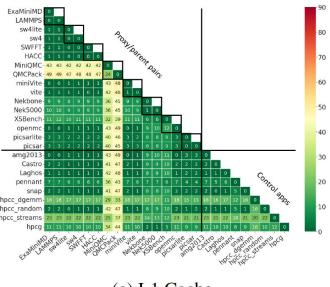
All features

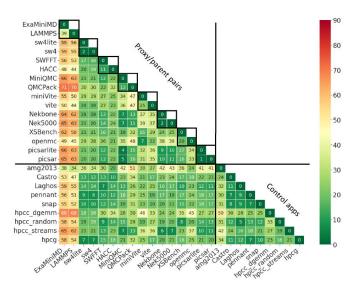
Top 25 unrelated features

Subgroup Features Similarity

How to **select** a representative set of proxies?

Help proxy developers to observe the behavior differences to tackle code changes better and produce sounder proxies.





(a) L1 Cache

(b) Memory Pipeline

Feature Standard Deviation

How to effectively identify the discrepancies?

The variability of hardware performance counters (features) during runtime

Table 4: Dissimilarity Feature Source for Proxy/Parents Pairs

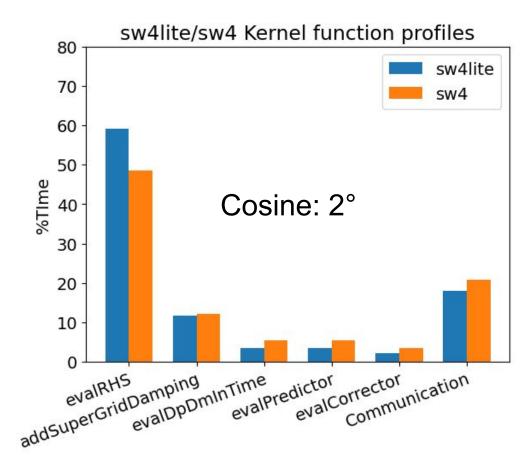
Substantial feature-level deviations often reflect deeper behavioral divergence.

Proxy and Parent pairs	>2std	>3std	>4std	>5std
ExaMiniMD / LAMMPS	10	8	8	4
SW4lite / SW4	1	1	1	1
SWFFT / HACC	17	12	11	8
miniQMC / QMCPACK	13	10	8	6
miniVite / Vite	72	38	23	21
Nekbone / Nek5000	11	6	2	2
XSbench OpenMC	16	9	9	8
PICSARlite / PICSAR	1	1	1	0
Unique feature #s	99	64	49	38

Validating Similarity: Root Cause Analysis

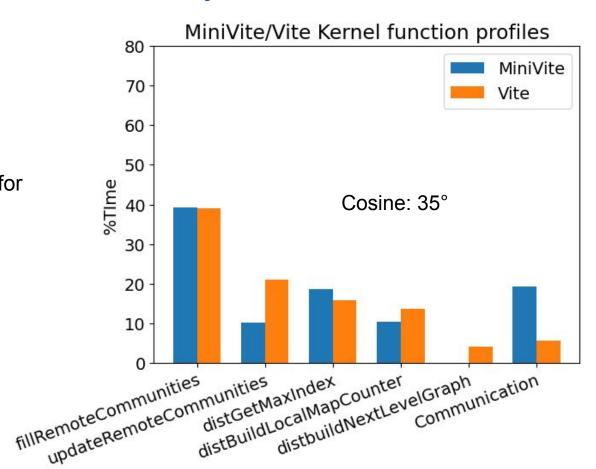
Ground truth for proxy-parent similarity: code base implementations

Kernel function profiles (normalized execution time) collected with gporf.



Less Rosy Root Cause Analysis

We recommend a general similarity threshold of 30° for cosine similarity.



Conclusion

Calder **identifies** representative features, **minimizing** data collection overhead, and **highlights** key dissimilarities to **guide** future proxy co-design.

How to quantify similarity?

Cosine Similarity

How to **select** a representative set of proxies?

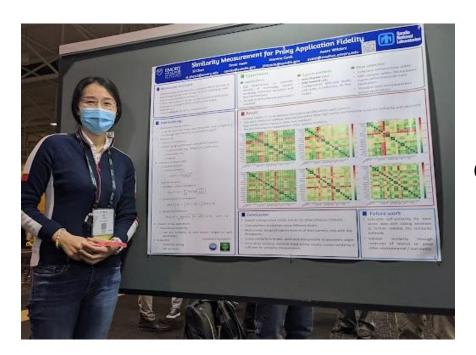
Subgroup Features

How to effectively identify the discrepancies?

Dissimilarity

Thank you!

GitHub



meditates@gmail.com

CV of Dr. Si Chen

