andia

‘ AREA 67 Nato
UCF Labor t

IIIIIIIIIIIIIIIIIIIIIIIIII

Workload-Adaptive Scheduling
Efficient Use
Parallel File Systems
HPC Clusters

Alexander V. Goponenko Benjamin A. Allan James M. Brandt
Damian Dechev

Job scheduling on HPC cluster

:.; Arrival of jobs
e . : » Users submit jobs and specify
L e 2l L L jobs’ resource requirements
; b &) . o & « Essential parameters:
* Number of nodes
Job Queue * Time limit
« Scheduling algorithms
determine the order of
| Resoweeallocaton starting jobs during shortage
of resources
O - - - - - . * NP-hard problem

UCF

Allocation

Scheduling with backfilling

Node limit

Time

Allocation

Scheduling with backfilling

* If a job cannot run, - EEEE——
reserve resources

to prevent any further delays

Node limit

Time

Allocation

Scheduling with backfilling

* If a job cannot run, —
reserve resources

to prevent any further delays

Node limit

Time

Allocation

Scheduling with backfilling

* If a job cannot run, —
reserve resources
to prevent any further delays

Node limit

Time

Allocation

Scheduling with backfilling

* If a job cannot run,
reserve resources
to prevent any further delays

Node limit A later job may start

__ before an earlier job
but cannot delay it

Time

Modern HPC systems
require multiple-resource scheduling

« Modern system are complicated
« Many resources (burst buffers, GPU, etc.)
« I/O bottlenecks (network, parallel file system)

 Modern schedulers should —

- schedule jobs
 aiming at improving efficiency
« accounting for user policy considerations
- handle various resource constraints
— reduce user’s burden to provide resource requirements

— anticipate that jobs’ runtime and resource usage may depend on how

the jobs are scheduled

Single-resource scheduling

Node
requirements

<

) i it

Node
allocation

Time

File System
requirements

Node
requirements

Max

File System
throughput

<

ax

Node
allocation

Multi-resource scheduling

Time

10

"Common” I/O-aware scheduling

 Key features
e The schedu

» The schedu
file system

of “common” I/O-aware scheduling!
er estimates the file system throughput of the jobs
er doesn't let the total estimated throughput to exceed the

handwidth

« Our implementation can be configured to perform “common”
I/O-aware scheduling and workload-adaptive scheduling

1 M. R. Wyatt, S. Herbein, T. Gamblin, and M. Taufer, “Al410: A suite of Al-based tools for I0-aware
scheduling,” Int. J. High Perform. Comput. Appl. 2022, doi: 10.1177/10943420221079765.

UCF

https://doi.org/10.1177/10943420221079765

Outline

(1\

z]

Slurm
scheduler

©

job resource
requirements

e Slurm —scheduling

https://slurm.schedmd.com/

O
current

resource
utilization

Analytical
Services

=

~ LDMS Records

_

https://github.com/algo74/slurm/tree/workload-adaptive-paper-2024

* Analytical services — estimating resource requirements

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

stores data from nodes

[LDMS ?DJ

 Lightweight Distributed Metric Service (LDMS) — measuring resource usage
https://github.com/ovis-hpc/ldms

13

-

Scheduler/Manager

submitting job

A

nalytical services

~

classification tag(job parameters...)

job requirements(classification tag)

current resource utilization()

process job(job id, classification tag)

<
3

Database

/\

R
\

AN

é/

historical records

SO

scheduling
¢
g
finishing job y
¢
N /

-

Performance monitoring tool

I

resource utilization
summary data

\

J

),
h
J

14

Scheduler

* Request resource

requirements for jobs Scheduler/Manager
(SLURMctld)
* Request real-time bmitting Job

e Take into account the /
obtained values during scheduling //

scheduling V'Y

utilization of the resources «?

* Set job ID on the nodes finishing job

* Send a signal when a job
is completed

https://github.com/algo74/slurm/tree/workload-adaptive-paper-2024

Analytical services

classification tag(job parameters...)

job requirements(classification tag)

2

current resource utilization()

A

process job(job id, classification tag)

Performance monitoring tool

15

Analytical services

NN

classification tag(job parameters...)

Measuring resource usage

Database

Y

job requirements(classification tag)

\

current resource utilization()

process job(job id, classification tag)

1~

resource utilization
summary data

historical records

D NERNNRNRN

Performance monitoring tool
(LDMS)

\/

« Lightweight Distributed
Metric Service (LDMS)
« No modification

» jobinfo plugin associates
records with jobs

https://github.com/ovis-hpc/ldms

Analytical services

classification tag(job parameters...)

Database

job requirements(classification tag)

current resource utilization()

process job(job id, classification tag)

resource utilization
summary data

1~

D NERNNRANERNN

Performance monitoring tool
(LDMS)

historical records
\ /

Analytical services

* Prediction of jobs’ resource
requirements
* classification tag(...)
« job requirements(...)
« process job(...)

 Real-time utilization of
resources
 current resource utifization(...)

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

Real-time utilization of resources

Analytical services

NN

classification tag(job parameters...)

Database

job requirements(classification tag)

current resource utilization()

7

process job(job id, classification tag)

resource utilization
summary data

D NERNNRANERNN

Performance monitoring tool
(LDMS)

— T
\ /
historical records
\ /

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

* Periodically retrieve recent
LDMS records

e Ca
uti
 Fu

culate whole-system
ization of the resources

fill requests with the

latest value

18

Predicting jobs’ resource requirements

Analytical services

Database

classification tag(job parameters...)
job requirements(classification tag)

7
/!

current resource utilization()

7

process job(job id, classification tag)

resource utilization
summary data

1~

D NERNNRANERNN

Performance monitoring tool
(LDMS)

— T
\ /
historical records
\ /

« Step 1: Classify the job into a
group based on the job’s
parameters, e.g.

e User ID

 Job type

 Script name
 User-specified timelimit

« Requested number of nodes

» Step 2: Retrieve the most
recent estimate for the group

 We maintain estimates of the
groups in a database

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

19

Processing finished jobs

e Retrieve LDMS records for

the job
« Calculate the average usage

Analytical services Database for the JOb
/7 classification tag(job parameters...) ° RecalCL”ate and update the
g | resource utilization estimates for the group

7 job requirements(classification tag) ¢ | summary data]]

% J— — « Exponentially weighted
/z current resource utilization() \\ — mOVing dverage
7/ historical records

process job(job id, classification tag) — |~ __
/

Performance monitoring tool
(LDMS)

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

 Using “bandwidth” as the throughput limit not necessarily leads

to the best performance
 Susceptibility to errors in estimating resource requirements
« May increase idling of in-demand resources

n
UCF

* Host

* Intel Xeon E5-2697 v2
(12 cores, 2.70 GHz)

* 64 GiB RAM

e Lustre
2 MGS/MDS
e 2 0SS

* Nodes
* 1 control node
* 8 compute nodes

Cluster of virtual machines

MDT
MGS/MDS1 O
MGS/MDS2
Control O OST1
LT, OST2
0sS1
0552

o%%@@

22

Performance of I/O-aware scheduling:

Job queue 1
* Periodical pattern: ———
5 waves of “write” 2% — 300 s average
and “sleep” jobs 2 151
e Default Slurm élo-
scheduler B gl
+ Startthe jobsin =

order they appear
in the queue

El write
sleep

node allocation
o N B (@)]

0 2500 5000 7500 10000 12500 15000 17500 20000

time, s
&
UCF

Performance of I/O-aware scheduling:
Job queue 1

. Default Slurm scheduler X R 1L R

» I/0-aware scheduling

* 4 “write” jobs simultaneously
* 9.4% faster

o N E ()] o w
I 1 1 1 1 1

node allocation

Performance of I/O-aware scheduling:
Job queue 1

* 4 “write” jobs simultaneously

25 - 10 s average
—— 300 s average

3 “write” jobs simultaneously
(additional 2.4% speedup)

5
0 -

HE write
6 sleep
4
2
0

i I I
0 2500 5000 7500 10000 12500 15000 17500 20000
time, s

Performance of I/O-aware scheduling:
Job queue 1

!‘\ J UN\ kw' ; ‘l"\- fﬁ"kuk M
» 4 “write” jobs simultaneously L
» 2 “write” jobs simultaneously WW\MMNWV‘WM
(decrease in performance) < . T =

0 2500 5000 7500 10000 12500 15000 17500 20000
time, s

Performance of I/O-aware scheduling:
Job queue 2 (half the "write” jobs)

« 3 “write” jobs simultaneously ~ ° W/\‘\ M |

« 2 “write” jobs simultaneously ¢ WLMJW\M

(best performance) » =

time [seconds]

[md] indybnouyy [mg] indybnoayy

uonedo|e
apou

load

Stable load is optimal

indybnouyy

indybnouyy

o0
(@]

time [seconds]

load

HPC cluster

Mellanox EDR
Infiniband 2 metadata servers

verage

average

4 OSS servers

288 °
compute e 56 OST volumes wverage
nodes ® ~ (SSD) average
383 TiB total
capacity »

29

Robustness of I/O-aware scheduling:
"Workload 1" (HPC cluster)

Default

* Periodical pattern (8x)
« 30 “writex8" jobs
« 60 “sleep” jobs

A 7 s average
) 2 ' ‘ro,;_r " . 'V s average
2 2908 45 L " »,
= el | [' :
JAARLS 5" :
i] :
idth is 15-20 GiB
» Bandwidth is 15- iB/s 55 o
S 4
0_

0 5000 10000 15000 20000 25000 33147
- time, s
- ‘ | ‘ | l o 1/O- aware(llmltZOGlB/s) 05 mveras

u
&0
=
!
—

=
—
=
=
Bl
-
-
e

t t
L *
—{ & -
— W}

T L] L T T r T © T " ©¥ 1°¥T 1T 71

T
0 1 2 3 i 5 6 7 8 9 10 11 12 13 14 15

0 5000 10000 15000 20000 25000 29674
time, s

30

Robustness of I/0O-aware scheduling:
"Workload 1" (HPC cluster)

» Periodical pattern (8x)

20 - —
30 “"writex8" jobs o
« 60 “sleep” jobs O 2 n
L - . 7 o
 Bandwidth is 15-20 GiB/s E %’35 10 -
* The estimator is pre-trained =

by running jobs in isolation

node
allocation
p—
o (\) ()
]]]

S
1

-
|

Robustness of I/0O-aware scheduling:
"Workload 1" (HPC cluster)

» Periodical pattern (8x)
« 30 “writex8" jobs

« 60 “sleep” jobs v é-g
7 a'a)
 Bandwidth is 15-20 GiB/s E %05
» The estimator is pre-trained =
by running jobs in isolation
» I/O-aware scheduler initially _ 12 -
schedules no more than 5 v 2
“writex8"” jobs S8 87
e
=

Robustness of I/0O-aware scheduling:
"Workload 1" (HPC cluster)

» Periodical pattern (8x)
« 30 “writex8" jobs

« 60 “sleep” jobs v é-g
7 a'a)
 Bandwidth is 15-20 GiB/s E %05
» The estimator is pre-trained =
by running jobs in isolation
» I/O-aware scheduler initially _ 12 -
schedules no more than 5 v 2
“writex8"” jobs S8 87
e
=

e Later, I/O-aware scheduler
allows as many as 12
“writex8" jobs

Robustness of I/O-aware scheduling:
"Workload 1" (HPC cluster)

* 10% improvement using
I/O-aware scheduler with
20 GiB/s throughput limit

Default

0 5000 10000 15000 20000 25000 33147
time, s

—— |/O-aware (I|m|t 20 GiB/s) -——

0 5000 10000 15000 20000 25000 29674 Q 34
time, s

Robustness of I/O-aware scheduling:
"Workload 1" (HPC cluster)

* 10% improvement using 5", '/'aware("mit . iB/S) 103 serags
I[/O-aware scheduler with %21 fA M 1 1Y ¥ £Y L
20 GiB/s throughput limit 5 kel Al
 additional 10% improvement v .
using 15 GiB/s throughput 54
limit U0 s 1000 15000 20000 25000 29674
time s -10%

« 20% improvement overall — I/0-aware (limit 15 GiB/s) -

» Overscheduling leads to :
further overscheduling

- Systematic error is not -
correCted) 5000 10000 15000 20000 26403

time, s

Multi-resource scheduling:

'Idling in-demand resources

Throughput =2
Q)
x

<
Q

Node

Time

Multi-resource scheduling:
Idling in-demand resources

ughput =2
Q)

Z Thro
Q

tion

Node

alloca

 Better performance can be attained in case rate vs load

dependence i

« I/O-aware sc
approximatec

S CONCave

neduling is not robust when job loads are
by job rates

* Overschedu

ing leads to further overscheduling

 Systematic error is not corrected

 [/O-aware scheduling (as other multi-resource scheduling)
increase possibly of resources being idle while they are in-
demand

1/0 throughput is a special type of resource

* Cluster-wide, non-exclusive resource
» The scheduler cannot prevent jobs from using more than allocated
 Jobs that use the resource can impede each other progress

« Users may not know how their jobs use the resource
« Measured resource utilization depends on job’s running conditions

39

Ideal scenario

» Full utilization of nodes “
» Stable I/O throughput g

Ideal makespan =T

O N MO O
_1 1 I

Workload-adaptive scheduling:

time [seconds]

Total area of jobs

Total number of nodes

Total number of bytesread/written

Ideal throughput = R™ =

Ideal makespan

Workload-adaptive scheduling:
Practical objective

 Target throughput is estimated from pending jobs

Estmated number of bytes read /written

T t th hput =
arget througnpu Estimated makespan

» Scheduler attempts to maintain the throughput close to
Target throughput while keeping all nodes occupied

» "Hard limit” (bandwidth) is still used to prevent overload

* Predictions of job parameters (and correspondingly
Target throughput) are continuously updated

Workload-adaptive scheduling:
"Workload 1" (HPC cluster)

« Workload-adaptive I/0O-
aware scheduler (bottom)
converges to optimal state

* 5.5% better than “common’
I/O-aware scheduler with 15
GiB/s limit

e 25% better than the default
Slurm scheduler

(4

— 1/O-aware (limit 15 GiB/s)

20

10s ge
. T .) rage
Al MM RESh: K M Al
° ..\‘:. a4 A 1
_"” '
c 12 Bl writex8
o leep
o=
25 81
0o
’ MWMWM
0- 1
0 5000 10000 15000 20000 26403
time, s
" Workload-adaptive o
i s g

[(] 1 1 1 1
c i
o
o2
S T
€5
’ 4_LUJJJWW|WIWIM
O_

T
0 5000 10000 15000 20000 24379
time, s

« The algorithm described so far:
- Jobs using the file system can’t be scheduled at time

slots for which Target throughput has been reached
o only jobs with “zero load” can still be scheduled

- The algorithm may cause idle node time and
performance degradation if “zero load” jobs are not
available

« The algorithm should
- Keep idle time of the nodes at minimum

- Keep file system load reasonably close to
Target throughput

« Solution: Two-group approximation

Two-group approximation

job’s estimated throughput

o _ _ “zero jobs™: {j: < nr
 Divide jobs into 2 groups according to r*: Lo .
regular jobs” : {]: r > nr

e 1 Can be set, for instance, so that \
job’s number of nodes
:E: ‘njl)-Ez :E: ‘njl)-
j €”zero jobs” j € "regular jobs” /f

job’s estimated runtime

o Find the average load of “zero jobs”
F= Y) Y wp
j €”zero jobs” j €”zero jobs”
o Recalculate target R*' = Target throughput — Nr*
0, j € “zero jobs”

r; —n;r*, j € “regularjobs”

o Recalculate jobs’ requirements 7y’ = {
J J

UCF

Two-group approximation:
"Workload 2” (HPC cluster)

» Periodical pattern (5x%)
e 30 “writex8" (8 threads x 10 GiB)
e 30 “writex6” (6 threads x 10 GiB)

Default

10 s average
— 300 s average

Lustr
throughput,
GiB/

B writex8
e 30 “writex4” (4 threads x 10 GiB) o8 N
. 2 B writex2
e 70 “writex2"” (2 threads x 10 GiB) E 32251
« 120 “writex1” (1 thread x 10 GiB) S 10 000 20000 30 000 43085
« 60 “sleep” (10 mi e
P~ (20min) _ —— |/0-aware (limit 20 GiB/s) —
& | 6‘ ¥ — 300 s average

* 4% improvement using
I/O-aware scheduler with
20 GiB/s throughput limit T

k.. ’

0 10000 20000 30000 41665

45
UCF

time, s

Two-group approximation:
"Workload 2” (HPC cluster)

* Periodical pattern (5x)
e 30 “writex8" (8 threads x 10 GiB
e 30 “writex6"” (6 threads x 10 GiB

Default

[\
o
1

10 s average
— 300 s average

GiB/s
=
1

Lustre
throughput,

(o)
1

)
) Bl vritex8
e 30 “writex4"” (4 threads x 10 GiB) " - — R
e 70 “writex2" (2 threads x 10 GiB) "< = XVTIP?
¢ 120 “Wl‘itex 1" 1 thread x 10 GiB) . 0 10000 20 000 30000 43085
time, s
* 60 “sleep” (10min) ., —— 1/0-aware (limit 15 GiB/s) —

— 300 s average

» 7% improvement using
I/O-aware scheduler with
15 GiB/s throughput limit

GiB/s
b=
1

Lustre
throughput,

(e}
1

—
[\
1

- Idle nodes S
» Could have been worse than o | .
the default Scheduling 0 10000 20000 30000 39,890 gﬁ 16
time, s UCF

Two-group approximation:
"Workload 2” (HPC cluster)

Default

» Workload-adaptive scheduler . — 001 meoge
with 20 GiB/s limit (bottom) z:z
maintains constant : _
throughput without causing .= —
idle nodes 2 — Qi
* 5% better than I/O-aware o s
scheduler with 15 GiB/s limit time.s _
. 12% better than the default . =7 VX‘:rk"’d'adapt.“'e("m't 20GiBfS) 4 e

Slurm scheduler

Lustre
throughput
GiB/

|
|

i

Tl

0 10000 20000 30000 37825
time, s

w
UCF

Conclusions

- We demonstrated a prototype of I/O-aware scheduler based on
Slurm and LDMS

 Predictions of resource requirement based on historical data
» Ability to manage Lustre throughput

» We proposed Workload-adaptive scheduling approach
 with “two-group” approximation

« We evaluated the feasibility of the approach
- on a real HPC cluster

= on a cluster of virtual machines
- by simulations

Acknowledgements

« The works at the University of Central Florida were supported
through contracts with Sandia National Laboratories

» Thanks to Benjamin Schwaller, Omar Aaziz, and others at SNL
for valuable discussions and help throughout the project

« Thanks to Christina Peterson, Kenneth Lamar and the rest of
Prof. Dechev team at UCF

Sandia National Laboratories is a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

UCF

	Slide 1: Workload-Adaptive Scheduling for Efficient Use of Parallel File Systems in HPC Clusters
	Slide 2: Job scheduling on HPC cluster
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Modern HPC systems require multiple-resource scheduling
	Slide 9
	Slide 10
	Slide 11: “Common” I/O-aware scheduling
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Shortcomings of “common” I/O-aware scheduling
	Slide 22: Performance of I/O-aware scheduling: Job queue 1
	Slide 23: Performance of I/O-aware scheduling: Job queue 1
	Slide 24: Performance of I/O-aware scheduling: Job queue 1
	Slide 25: Performance of I/O-aware scheduling: Job queue 1
	Slide 26: Performance of I/O-aware scheduling: Job queue 1
	Slide 27: Performance of I/O-aware scheduling: Job queue 2 (half the ”write” jobs)
	Slide 28: Stable load is optimal
	Slide 29: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 30: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 31: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 32: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 33: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 34: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 35: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 36: Multi-resource scheduling: Idling in-demand resources
	Slide 37: Multi-resource scheduling: Idling in-demand resources
	Slide 38: Shortcomings of I/O-aware scheduling
	Slide 39: Workload-adaptive scheduling
	Slide 40: Workload-adaptive scheduling: Ideal scenario
	Slide 41: Workload-adaptive scheduling: Practical objective
	Slide 42: Workload-adaptive scheduling: “Workload 1” (HPC cluster)
	Slide 43: Reducing node idle time
	Slide 44: Two-group approximation
	Slide 45: Two-group approximation: “Workload 2” (HPC cluster)
	Slide 46: Two-group approximation: “Workload 2” (HPC cluster)
	Slide 47: Two-group approximation: “Workload 2” (HPC cluster)
	Slide 48: Conclusions
	Slide 49: Acknowledgements

