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Job scheduling on HPC cluster

• Users submit jobs and specify 

jobs’ resource requirements

• Essential parameters:

• Number of nodes

• Time limit

• Scheduling algorithms 

determine the order of 

starting jobs during shortage 

of resources

• NP-hard problem
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• If a job cannot run, 
reserve resources 
to prevent any further delays
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• If a job cannot run, 
reserve resources 
to prevent any further delays

Time

A
ll

o
c
a

ti
o

n Node limit A later job may start 
before an earlier job 
but cannot delay it

Scheduling with backfilling



• Modern system are complicated
• Many resources (burst buffers, GPU, etc.)

• I/O bottlenecks (network, parallel file system)

• Modern schedulers should –
− schedule jobs

• aiming at improving efficiency

• accounting for user policy considerations

− handle various resource constraints

− reduce user’s burden to provide resource requirements

− anticipate that jobs’ runtime and resource usage may depend on how 
the jobs are scheduled

Modern HPC systems 
require multiple-resource scheduling
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• Key features of “common” I/O-aware scheduling1

• The scheduler estimates the file system throughput of the jobs

• The scheduler doesn’t let the total estimated throughput to exceed the 
file system bandwidth

• Our implementation can be configured to perform “common” 
I/O-aware scheduling and workload-adaptive scheduling

“Common” I/O-aware scheduling
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1 M. R. Wyatt, S. Herbein, T. Gamblin, and M. Taufer, “AI4IO: A suite of AI-based tools for IO-aware 
scheduling,” Int. J. High Perform. Comput. Appl. 2022, doi: 10.1177/10943420221079765.

https://doi.org/10.1177/10943420221079765
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Overvew of our scheduling system

Shortcomings of 
“common” I/O-aware scheduling

Workload-adaptive scheduling

Outline
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• Slurm – scheduling
• https://slurm.schedmd.com/

• https://github.com/algo74/slurm/tree/workload-adaptive-paper-2024

• Analytical services – estimating resource requirements
• https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

• Lightweight Distributed Metric Service (LDMS) – measuring resource usage
• https://github.com/ovis-hpc/ldms

Overview of our system
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Scheduler/Manager

submitting job

scheduling

classification tag(job parameters…)

job requirements(classification tag)

resource utilization 
summary data

current resource utilization( )

finishing job

DatabaseAnalytical services

historical records

Performance monitoring tool 

process job(job id, classification tag)



(SLURMctld)
Scheduler/Manager
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• Request resource 
requirements for jobs

• Request real-time 
utilization of the resources

• Take into account the 
obtained values during 
scheduling

• Set job ID on the nodes

• Send a signal when a job 
is completed

submitting job

scheduling

classification tag(job parameters…)

job requirements(classification tag)

current resource utilization( )

finishing job

Analytical services

Performance monitoring tool 

process job(job id, classification tag)

Scheduler

https://github.com/algo74/slurm/tree/workload-adaptive-paper-2024
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classification tag(job parameters…)

job requirements(classification tag)

resource utilization 
summary data

current resource utilization( )

DatabaseAnalytical services

historical records

Performance monitoring tool 

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Lightweight Distributed 
Metric Service (LDMS)

• No modification

• jobinfo plugin associates 
records with jobs

Measuring resource usage

https://github.com/ovis-hpc/ldms
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classification tag(job parameters…)

job requirements(classification tag)

resource utilization 
summary data

current resource utilization( )

DatabaseAnalytical services

historical records

Performance monitoring tool 

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Prediction of jobs’ resource 
requirements

• classification tag(…)

• job requirements(…)

• process job(…)

• Real-time utilization of 
resources

• current resource utilization(…)

Analytical services

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024
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classification tag(job parameters…)

job requirements(classification tag)

resource utilization 
summary data

current resource utilization( )

DatabaseAnalytical services

historical records

Performance monitoring tool 

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Periodically retrieve recent 
LDMS records

• Calculate whole-system 
utilization of the resources

• Fulfill requests with the 
latest value

Real-time utilization of resources

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024
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classification tag(job parameters…)

job requirements(classification tag)

resource utilization 
summary data

current resource utilization( )

DatabaseAnalytical services

historical records

Performance monitoring tool 

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Step 1: Classify the job into a 
group based on the job’s 
parameters, e.g.

• User ID

• Job type

• Script name

• User-specified timelimit

• Requested number of nodes

• Step 2: Retrieve the most 
recent estimate for the group

• We maintain estimates of the 
groups in a database

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

Predicting jobs’ resource requirements



Database
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classification tag(job parameters…)

job requirements(classification tag)

resource utilization 
summary data

current resource utilization( )

DatabaseAnalytical services

historical records

Performance monitoring tool 

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Retrieve LDMS records for 
the job

• Calculate the average usage 
and the variance for the job

• Recalculate and update the 
estimates for the group

• Exponentially weighted 
moving average

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

Processing finished jobs



• Using “bandwidth” as the throughput limit not necessarily leads 
to the best performance

• Susceptibility to errors in estimating resource requirements

• May increase idling of in-demand resources

Shortcomings of 
“common” I/O-aware scheduling

21



Performance of I/O-aware scheduling:
Job queue 1
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• Periodical pattern:
5 waves of “write” 
and “sleep” jobs

• Default Slurm 
scheduler

•  Start the jobs in 
order they appear 
in the queue

• Host
• Intel Xeon E5-2697 v2 

(12 cores, 2.70 GHz)

• 64 GiB RAM

• Lustre
• 2 MGS/MDS

• 2 OSS

• Nodes
• 1 control node

• 8 compute nodes

MGS/MDS1

MGS/MDS2

MDT

OSS2

OSS1
OST2

OST1Control
node

8 compute nodes

Cluster of virtual machines



Performance of I/O-aware scheduling:
Job queue 1
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• Periodical pattern:
5 waves of “write” 
and “sleep” jobs

• Default Slurm 
scheduler

•  Start the jobs in 
order they appear 
in the queue



Performance of I/O-aware scheduling:
Job queue 1
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• 4 “write” jobs simultaneously

• I/O-aware scheduling
• 4 “write” jobs simultaneously

• 9.4% faster

–9.4%



Performance of I/O-aware scheduling:
Job queue 1
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• 3 “write” jobs simultaneously 
(additional 2.4% speedup)

–2.4%



Performance of I/O-aware scheduling:
Job queue 1
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• 2 “write” jobs simultaneously
(decrease in performance)

+5.1%



Performance of I/O-aware scheduling:
Job queue 2 (half the ”write” jobs)
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• 3 “write” jobs simultaneously

• 2 “write” jobs simultaneously
(best performance)



BW

BW

Stable load is optimal
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Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)
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• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

Default

I/O-aware (limit 20 GiB/s)

HPC cluster
Mellanox EDR 

Infiniband

56 OST volumes 
(SSD)

383 TiB total 
capacity

4 OSS servers

2 metadata servers

288 
compute 
nodes



Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)
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• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

Default

I/O-aware (limit 20 GiB/s)



Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)
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• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

• The estimator is pre-trained 
by running jobs in isolation



Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)
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• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

• The estimator is pre-trained 
by running jobs in isolation

• I/O-aware scheduler initially 
schedules no more than 5 
“write×8” jobs



Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)
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• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

• The estimator is pre-trained 
by running jobs in isolation

• I/O-aware scheduler initially 
schedules no more than 5 
“write×8” jobs

• Later, I/O-aware scheduler 
allows as many as 12 
“write×8” jobs



Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)
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• 10% improvement using 
I/O-aware scheduler with 
20 GiB/s throughput limit

Default

I/O-aware (limit 20 GiB/s)
–10%



Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)
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• 10% improvement using 
I/O-aware scheduler with 
20 GiB/s throughput limit

• additional 10% improvement 
using 15 GiB/s throughput 
limit

• 20% improvement overall

• Overscheduling leads to 
further overscheduling

• Systematic error is not 
corrected

I/O-aware (limit 20 GiB/s)

–10%
I/O-aware (limit 15 GiB/s)



Multi-resource scheduling:
Idling in-demand resources
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Multi-resource scheduling:
Idling in-demand resources
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• Better performance can be attained in case rate vs load 
dependence is concave

• I/O-aware scheduling is not robust when job loads are 
approximated by job rates

• Overscheduling leads to further overscheduling

• Systematic error is not corrected

• I/O-aware scheduling (as other multi-resource scheduling) 
increase possibly of resources being idle while they are in-
demand

Shortcomings of I/O-aware 
scheduling

38



• Cluster-wide, non-exclusive resource
• The scheduler cannot prevent jobs from using more than allocated 

• Jobs that use the resource can impede each other progress

• Users may not know how their jobs use the resource
• Measured resource utilization depends on job’s running conditions

Workload-adaptive scheduling

39

I/O throughput is a special type of resource



• Full utilization of nodes

• Stable I/O throughput

Workload-adaptive scheduling: 
Ideal scenario

40

𝐼𝑑𝑒𝑎𝑙 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑇∗ =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑗𝑜𝑏𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

𝑠

𝐼𝑑𝑒𝑎𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑅∗ =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑡𝑒𝑛

𝐼𝑑𝑒𝑎𝑙 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛



• Target throughput is estimated from pending jobs

𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐸𝑠𝑡𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑡𝑒𝑛

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

• Scheduler attempts to maintain the throughput close to 
𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 while keeping all nodes occupied

• “Hard limit” (bandwidth) is still used to prevent overload

• Predictions of job parameters (and correspondingly 
𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) are continuously updated

Workload-adaptive scheduling: 
Practical objective

41



Workload-adaptive scheduling:
“Workload 1” (HPC cluster) 
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• Workload-adaptive I/O-
aware scheduler (bottom) 
converges to optimal state

• 5.5% better than “common” 
I/O-aware scheduler with 15 
GiB/s limit

• 25% better than the default 
Slurm scheduler

I/O-aware (limit 15 GiB/s)

Workload-adaptive



● The algorithm described so far:
○ Jobs using the file system can’t be scheduled at time 

slots for which 𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 has been reached 
○ only jobs with “zero load” can still be scheduled

○ The algorithm may cause idle node time and 
performance degradation if “zero load” jobs are not 
available

● The algorithm should
○ Keep idle time of the nodes at minimum
○ Keep file system load reasonably close to 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

● Solution: Two-group approximation

Reducing node idle time

43
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● Divide jobs into 2 groups according to 𝑟∗: 
“zero jobs”: 𝑗: 𝑟𝑗 ≤ 𝑛𝑗𝑟∗

“regular jobs” : 𝑗: 𝑟𝑗 > 𝑛𝑗𝑟∗

● 𝑟∗ can be set, for instance, so that 

෍

𝑗 ∈ ”zero jobs”

𝑛𝑗𝐷𝑗 ≥ ෍

j ∈ ”regular jobs”

𝑛𝑗𝐷𝑗

● Find the average load of “zero jobs”

ഥ𝑟∗ = ൙෍

𝑗 ∈ ”zero jobs”

𝑟𝑗𝑛𝑗𝐷𝑗 ෍

𝑗 ∈ ”zero jobs”

𝑛𝑗𝐷𝑗

● Recalculate target 𝑅∗′ = 𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 − 𝑁 ഥ𝑟∗

● Recalculate jobs’ requirements 𝑟𝑗
′ = ൝

0, 𝑗 ∈ “zero jobs”

𝑟𝑗 − 𝑛𝑗
ഥ𝑟∗, 𝑗 ∈ “regular jobs”

Two-group approximation

44

job’s estimated throughput

job’s number of nodes

job’s estimated runtime



Two-group approximation:
“Workload 2” (HPC cluster)
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• Periodical pattern (5×)
• 30 “write×8” (8 threads × 10 GiB)

• 30 “write×6” (6 threads × 10 GiB)

• 30 “write×4” (4 threads × 10 GiB)

• 70 “write×2” (2 threads × 10 GiB)

• 120 “write×1” (1 thread × 10 GiB)

• 60 “sleep” (10 min)

• 4% improvement using 
I/O-aware scheduler with 
20 GiB/s throughput limit

Default

I/O-aware (limit 20 GiB/s)



Two-group approximation:
“Workload 2” (HPC cluster)
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• Periodical pattern (5×)
• 30 “write×8” (8 threads × 10 GiB)

• 30 “write×6” (6 threads × 10 GiB)

• 30 “write×4” (4 threads × 10 GiB)

• 70 “write×2” (2 threads × 10 GiB)

• 120 “write×1” (1 thread × 10 GiB)

• 60 “sleep” (10 min)

• 7% improvement using 
I/O-aware scheduler with 
15 GiB/s throughput limit

• Idle nodes

• Could have been worse than 
the default scheduling

Default

I/O-aware (limit 15 GiB/s)



Two-group approximation:
“Workload 2” (HPC cluster)

47

• Workload-adaptive scheduler 
with 20 GiB/s limit (bottom) 
maintains constant 
throughput without causing 
idle nodes

• 5% better than I/O-aware 
scheduler with 15 GiB/s limit

• 12% better than the default 
Slurm scheduler

Default

Workload-adaptive (limit 20 GiB/s)



• We demonstrated a prototype of I/O-aware scheduler based on 
Slurm and LDMS

• Predictions of resource requirement based on historical data

• Ability to manage Lustre throughput

• We proposed Workload-adaptive scheduling approach
• with “two-group” approximation

• We evaluated the feasibility of the approach
⁃ on a real HPC cluster

⁃ on a cluster of virtual machines

⁃ by simulations

Conclusions

48
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