
Workload-Adaptive Scheduling
for Efficient Use

of Parallel File Systems
in HPC Clusters

Alexander V. Goponenko (UCF), Benjamin A. Allan (SNL), James M. Brandt (SNL),
and Damian Dechev (UCF)

Job scheduling on HPC cluster

• Users submit jobs and specify

jobs’ resource requirements

• Essential parameters:

• Number of nodes

• Time limit

• Scheduling algorithms

determine the order of

starting jobs during shortage

of resources

• NP-hard problem

2

3
Time

A
ll

o
c
a

ti
o

n Node limit

Scheduling with backfilling

4

• If a job cannot run,
reserve resources
to prevent any further delays

Time

A
ll

o
c
a

ti
o

n Node limit

Scheduling with backfilling

5

• If a job cannot run,
reserve resources
to prevent any further delays

Time

A
ll

o
c
a

ti
o

n Node limit

Scheduling with backfilling

6

• If a job cannot run,
reserve resources
to prevent any further delays

Time

A
ll

o
c
a

ti
o

n Node limit

Scheduling with backfilling

7

• If a job cannot run,
reserve resources
to prevent any further delays

Time

A
ll

o
c
a

ti
o

n Node limit A later job may start
before an earlier job
but cannot delay it

Scheduling with backfilling

• Modern system are complicated
• Many resources (burst buffers, GPU, etc.)

• I/O bottlenecks (network, parallel file system)

• Modern schedulers should –
− schedule jobs

• aiming at improving efficiency

• accounting for user policy considerations

− handle various resource constraints

− reduce user’s burden to provide resource requirements

− anticipate that jobs’ runtime and resource usage may depend on how
the jobs are scheduled

Modern HPC systems
require multiple-resource scheduling

8

9

Max

Time

N
o

d
e

al
lo

ca
ti

o
n

Single-resource scheduling

Node
requirements

10

Max

Max

Time

N
o

d
e

al
lo

ca
ti

o
n

Fi
le

 S
ys

te
m

th

ro
u

gh
p

ut
Multi-resource scheduling

File System
requirements

Node
requirements

• Key features of “common” I/O-aware scheduling1

• The scheduler estimates the file system throughput of the jobs

• The scheduler doesn’t let the total estimated throughput to exceed the
file system bandwidth

• Our implementation can be configured to perform “common”
I/O-aware scheduling and workload-adaptive scheduling

“Common” I/O-aware scheduling

11

1 M. R. Wyatt, S. Herbein, T. Gamblin, and M. Taufer, “AI4IO: A suite of AI-based tools for IO-aware
scheduling,” Int. J. High Perform. Comput. Appl. 2022, doi: 10.1177/10943420221079765.

https://doi.org/10.1177/10943420221079765

12

Overvew of our scheduling system

Shortcomings of
“common” I/O-aware scheduling

Workload-adaptive scheduling

Outline

13

• Slurm – scheduling
• https://slurm.schedmd.com/

• https://github.com/algo74/slurm/tree/workload-adaptive-paper-2024

• Analytical services – estimating resource requirements
• https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

• Lightweight Distributed Metric Service (LDMS) – measuring resource usage
• https://github.com/ovis-hpc/ldms

Overview of our system

14

Scheduler/Manager

submitting job

scheduling

classification tag(job parameters…)

job requirements(classification tag)

resource utilization
summary data

current resource utilization()

finishing job

DatabaseAnalytical services

historical records

Performance monitoring tool

process job(job id, classification tag)

(SLURMctld)
Scheduler/Manager

15

• Request resource
requirements for jobs

• Request real-time
utilization of the resources

• Take into account the
obtained values during
scheduling

• Set job ID on the nodes

• Send a signal when a job
is completed

submitting job

scheduling

classification tag(job parameters…)

job requirements(classification tag)

current resource utilization()

finishing job

Analytical services

Performance monitoring tool

process job(job id, classification tag)

Scheduler

https://github.com/algo74/slurm/tree/workload-adaptive-paper-2024

Database

16

classification tag(job parameters…)

job requirements(classification tag)

resource utilization
summary data

current resource utilization()

DatabaseAnalytical services

historical records

Performance monitoring tool

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Lightweight Distributed
Metric Service (LDMS)

• No modification

• jobinfo plugin associates
records with jobs

Measuring resource usage

https://github.com/ovis-hpc/ldms

Database

17

classification tag(job parameters…)

job requirements(classification tag)

resource utilization
summary data

current resource utilization()

DatabaseAnalytical services

historical records

Performance monitoring tool

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Prediction of jobs’ resource
requirements

• classification tag(…)

• job requirements(…)

• process job(…)

• Real-time utilization of
resources

• current resource utilization(…)

Analytical services

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

Database

18

classification tag(job parameters…)

job requirements(classification tag)

resource utilization
summary data

current resource utilization()

DatabaseAnalytical services

historical records

Performance monitoring tool

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Periodically retrieve recent
LDMS records

• Calculate whole-system
utilization of the resources

• Fulfill requests with the
latest value

Real-time utilization of resources

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

Database

19

classification tag(job parameters…)

job requirements(classification tag)

resource utilization
summary data

current resource utilization()

DatabaseAnalytical services

historical records

Performance monitoring tool

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Step 1: Classify the job into a
group based on the job’s
parameters, e.g.

• User ID

• Job type

• Script name

• User-specified timelimit

• Requested number of nodes

• Step 2: Retrieve the most
recent estimate for the group

• We maintain estimates of the
groups in a database

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

Predicting jobs’ resource requirements

Database

20

classification tag(job parameters…)

job requirements(classification tag)

resource utilization
summary data

current resource utilization()

DatabaseAnalytical services

historical records

Performance monitoring tool

process job(job id, classification tag)

Performance monitoring tool
(LDMS)

• Retrieve LDMS records for
the job

• Calculate the average usage
and the variance for the job

• Recalculate and update the
estimates for the group

• Exponentially weighted
moving average

https://github.com/algo74/py-sim-serv/tree/workload-adaptive-paper-2024

Processing finished jobs

• Using “bandwidth” as the throughput limit not necessarily leads
to the best performance

• Susceptibility to errors in estimating resource requirements

• May increase idling of in-demand resources

Shortcomings of
“common” I/O-aware scheduling

21

Performance of I/O-aware scheduling:
Job queue 1

22

• Periodical pattern:
5 waves of “write”
and “sleep” jobs

• Default Slurm
scheduler

• Start the jobs in
order they appear
in the queue

• Host
• Intel Xeon E5-2697 v2

(12 cores, 2.70 GHz)

• 64 GiB RAM

• Lustre
• 2 MGS/MDS

• 2 OSS

• Nodes
• 1 control node

• 8 compute nodes

MGS/MDS1

MGS/MDS2

MDT

OSS2

OSS1
OST2

OST1Control
node

8 compute nodes

Cluster of virtual machines

Performance of I/O-aware scheduling:
Job queue 1

23

• Periodical pattern:
5 waves of “write”
and “sleep” jobs

• Default Slurm
scheduler

• Start the jobs in
order they appear
in the queue

Performance of I/O-aware scheduling:
Job queue 1

24

• 4 “write” jobs simultaneously

• I/O-aware scheduling
• 4 “write” jobs simultaneously

• 9.4% faster

–9.4%

Performance of I/O-aware scheduling:
Job queue 1

25

• 3 “write” jobs simultaneously
(additional 2.4% speedup)

–2.4%

Performance of I/O-aware scheduling:
Job queue 1

26

• 2 “write” jobs simultaneously
(decrease in performance)

+5.1%

Performance of I/O-aware scheduling:
Job queue 2 (half the ”write” jobs)

27

• 3 “write” jobs simultaneously

• 2 “write” jobs simultaneously
(best performance)

BW

BW

Stable load is optimal

28

 𝐿′ 𝐿′′

R*

Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)

29

• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

Default

I/O-aware (limit 20 GiB/s)

HPC cluster
Mellanox EDR

Infiniband

56 OST volumes
(SSD)

383 TiB total
capacity

4 OSS servers

2 metadata servers

288
compute
nodes

Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)

30

• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

Default

I/O-aware (limit 20 GiB/s)

Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)

31

• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

• The estimator is pre-trained
by running jobs in isolation

Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)

32

• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

• The estimator is pre-trained
by running jobs in isolation

• I/O-aware scheduler initially
schedules no more than 5
“write×8” jobs

Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)

33

• Periodical pattern (8×)
• 30 “write×8” jobs

• 60 “sleep” jobs

• Bandwidth is 15-20 GiB/s

• The estimator is pre-trained
by running jobs in isolation

• I/O-aware scheduler initially
schedules no more than 5
“write×8” jobs

• Later, I/O-aware scheduler
allows as many as 12
“write×8” jobs

Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)

34

• 10% improvement using
I/O-aware scheduler with
20 GiB/s throughput limit

Default

I/O-aware (limit 20 GiB/s)
–10%

Robustness of I/O-aware scheduling:
“Workload 1” (HPC cluster)

35

• 10% improvement using
I/O-aware scheduler with
20 GiB/s throughput limit

• additional 10% improvement
using 15 GiB/s throughput
limit

• 20% improvement overall

• Overscheduling leads to
further overscheduling

• Systematic error is not
corrected

I/O-aware (limit 20 GiB/s)

–10%
I/O-aware (limit 15 GiB/s)

Multi-resource scheduling:
Idling in-demand resources

36

Max

Max

Time

N
o

d
e

al
lo

ca
ti

o
n

Th
ro

u
gh

pu
t

Multi-resource scheduling:
Idling in-demand resources

37

Max

Max

Time

N
o

d
e

al
lo

ca
ti

o
n

Th
ro

u
gh

pu
t

• Better performance can be attained in case rate vs load
dependence is concave

• I/O-aware scheduling is not robust when job loads are
approximated by job rates

• Overscheduling leads to further overscheduling

• Systematic error is not corrected

• I/O-aware scheduling (as other multi-resource scheduling)
increase possibly of resources being idle while they are in-
demand

Shortcomings of I/O-aware
scheduling

38

• Cluster-wide, non-exclusive resource
• The scheduler cannot prevent jobs from using more than allocated

• Jobs that use the resource can impede each other progress

• Users may not know how their jobs use the resource
• Measured resource utilization depends on job’s running conditions

Workload-adaptive scheduling

39

I/O throughput is a special type of resource

• Full utilization of nodes

• Stable I/O throughput

Workload-adaptive scheduling:
Ideal scenario

40

𝐼𝑑𝑒𝑎𝑙 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑇∗ =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑗𝑜𝑏𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

𝑠

𝐼𝑑𝑒𝑎𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑅∗ =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑡𝑒𝑛

𝐼𝑑𝑒𝑎𝑙 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

• Target throughput is estimated from pending jobs

𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐸𝑠𝑡𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑡𝑒𝑛

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

• Scheduler attempts to maintain the throughput close to
𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 while keeping all nodes occupied

• “Hard limit” (bandwidth) is still used to prevent overload

• Predictions of job parameters (and correspondingly
𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) are continuously updated

Workload-adaptive scheduling:
Practical objective

41

Workload-adaptive scheduling:
“Workload 1” (HPC cluster)

42

• Workload-adaptive I/O-
aware scheduler (bottom)
converges to optimal state

• 5.5% better than “common”
I/O-aware scheduler with 15
GiB/s limit

• 25% better than the default
Slurm scheduler

I/O-aware (limit 15 GiB/s)

Workload-adaptive

● The algorithm described so far:
○ Jobs using the file system can’t be scheduled at time

slots for which 𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 has been reached
○ only jobs with “zero load” can still be scheduled

○ The algorithm may cause idle node time and
performance degradation if “zero load” jobs are not
available

● The algorithm should
○ Keep idle time of the nodes at minimum
○ Keep file system load reasonably close to

𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

● Solution: Two-group approximation

Reducing node idle time

43

Max

Max

N
o

d
e

al

lo
ca

ti
o

n
Th

ro
u

gh
p

u
t

Max

Max

Time

N
o

d
e

al

lo
ca

ti
o

n
Th

ro
u

gh
p

u
t

● Divide jobs into 2 groups according to 𝑟∗:
“zero jobs”: 𝑗: 𝑟𝑗 ≤ 𝑛𝑗𝑟∗

“regular jobs” : 𝑗: 𝑟𝑗 > 𝑛𝑗𝑟∗

● 𝑟∗ can be set, for instance, so that

෍

𝑗 ∈ ”zero jobs”

𝑛𝑗𝐷𝑗 ≥ ෍

j ∈ ”regular jobs”

𝑛𝑗𝐷𝑗

● Find the average load of “zero jobs”

ഥ𝑟∗ = ൙෍

𝑗 ∈ ”zero jobs”

𝑟𝑗𝑛𝑗𝐷𝑗 ෍

𝑗 ∈ ”zero jobs”

𝑛𝑗𝐷𝑗

● Recalculate target 𝑅∗′ = 𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 − 𝑁 ഥ𝑟∗

● Recalculate jobs’ requirements 𝑟𝑗
′ = ൝

0, 𝑗 ∈ “zero jobs”

𝑟𝑗 − 𝑛𝑗
ഥ𝑟∗, 𝑗 ∈ “regular jobs”

Two-group approximation

44

job’s estimated throughput

job’s number of nodes

job’s estimated runtime

Two-group approximation:
“Workload 2” (HPC cluster)

45

• Periodical pattern (5×)
• 30 “write×8” (8 threads × 10 GiB)

• 30 “write×6” (6 threads × 10 GiB)

• 30 “write×4” (4 threads × 10 GiB)

• 70 “write×2” (2 threads × 10 GiB)

• 120 “write×1” (1 thread × 10 GiB)

• 60 “sleep” (10 min)

• 4% improvement using
I/O-aware scheduler with
20 GiB/s throughput limit

Default

I/O-aware (limit 20 GiB/s)

Two-group approximation:
“Workload 2” (HPC cluster)

46

• Periodical pattern (5×)
• 30 “write×8” (8 threads × 10 GiB)

• 30 “write×6” (6 threads × 10 GiB)

• 30 “write×4” (4 threads × 10 GiB)

• 70 “write×2” (2 threads × 10 GiB)

• 120 “write×1” (1 thread × 10 GiB)

• 60 “sleep” (10 min)

• 7% improvement using
I/O-aware scheduler with
15 GiB/s throughput limit

• Idle nodes

• Could have been worse than
the default scheduling

Default

I/O-aware (limit 15 GiB/s)

Two-group approximation:
“Workload 2” (HPC cluster)

47

• Workload-adaptive scheduler
with 20 GiB/s limit (bottom)
maintains constant
throughput without causing
idle nodes

• 5% better than I/O-aware
scheduler with 15 GiB/s limit

• 12% better than the default
Slurm scheduler

Default

Workload-adaptive (limit 20 GiB/s)

• We demonstrated a prototype of I/O-aware scheduler based on
Slurm and LDMS

• Predictions of resource requirement based on historical data

• Ability to manage Lustre throughput

• We proposed Workload-adaptive scheduling approach
• with “two-group” approximation

• We evaluated the feasibility of the approach
⁃ on a real HPC cluster

⁃ on a cluster of virtual machines

⁃ by simulations

Conclusions

48

• The works at the University of Central Florida were supported
through contracts with Sandia National Laboratories

• Thanks to Benjamin Schwaller, Omar Aaziz, and others at SNL
for valuable discussions and help throughout the project

• Thanks to Christina Peterson, Kenneth Lamar and the rest of
Prof. Dechev team at UCF

Acknowledgements

49

Sandia National Laboratories is a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

	Slide 1: Workload-Adaptive Scheduling for Efficient Use of Parallel File Systems in HPC Clusters
	Slide 2: Job scheduling on HPC cluster
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Modern HPC systems require multiple-resource scheduling
	Slide 9
	Slide 10
	Slide 11: “Common” I/O-aware scheduling
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Shortcomings of “common” I/O-aware scheduling
	Slide 22: Performance of I/O-aware scheduling: Job queue 1
	Slide 23: Performance of I/O-aware scheduling: Job queue 1
	Slide 24: Performance of I/O-aware scheduling: Job queue 1
	Slide 25: Performance of I/O-aware scheduling: Job queue 1
	Slide 26: Performance of I/O-aware scheduling: Job queue 1
	Slide 27: Performance of I/O-aware scheduling: Job queue 2 (half the ”write” jobs)
	Slide 28: Stable load is optimal
	Slide 29: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 30: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 31: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 32: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 33: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 34: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 35: Robustness of I/O-aware scheduling: “Workload 1” (HPC cluster)
	Slide 36: Multi-resource scheduling: Idling in-demand resources
	Slide 37: Multi-resource scheduling: Idling in-demand resources
	Slide 38: Shortcomings of I/O-aware scheduling
	Slide 39: Workload-adaptive scheduling
	Slide 40: Workload-adaptive scheduling: Ideal scenario
	Slide 41: Workload-adaptive scheduling: Practical objective
	Slide 42: Workload-adaptive scheduling: “Workload 1” (HPC cluster)
	Slide 43: Reducing node idle time
	Slide 44: Two-group approximation
	Slide 45: Two-group approximation: “Workload 2” (HPC cluster)
	Slide 46: Two-group approximation: “Workload 2” (HPC cluster)
	Slide 47: Two-group approximation: “Workload 2” (HPC cluster)
	Slide 48: Conclusions
	Slide 49: Acknowledgements

