Al-Assisted Design Space Analysis of High-Performance Arm Processors

Joseph Moore Tom Deakin Simon McIntosh-Smith 18th Nov 2024

University of Bristol High Performance Computing Group

What's the limit of a CPU?

- Consider the trace of executed instructions
 - Critical path = longest chain of data dependent instructions
- Cycles on "perfect" CPU = latency of critical path
 - Bottleneck is the program!
- How can hardware converge to this?

What this work does

- Quantifies impact of single-core bottlenecks
- Predicts no. cycles in known HPC applications for different hardware configurations
- Does so through Machine Learning
- Learn what the model learns how do parameters influence cycles?

Related work

- 2006-2007 "Golden Age"
 - P.J.Joseph et al, Lee et al, Dubach et al
- Lots of work using traditional ML/AI for parameter searches on few parameters
- Significant jumps in computer architecture since
 - Vectors i.e. Scalable Vector Extension are now commonly used!
- Most work since is focused or models power, space etc.
 - Gap in updated, broad view of core architecture

SimEng – Our Simulation Framework

- Cycle-approximate Out-Of-Order CPU simulator
- Allows simulation of every stage of the pipeline
- SST integration for memory model
- ~1 MIPS on moderate hardware
- Easy to use Simple YAML to define CPU properties

What we are modelling

Frontend			
Registers	Pipeline		
General Purpose FP/SVE	Reorder Buffer Size		
Conditional Predicate	Loop Load Buffer Queue Size Size		
Vector Length	Store Commit Queue Pipeline Size Width		
	Frontend LSQ Pipeline Completion Width Width		

What we are **not** modelling

- Reservation Stations
- Execution Units
- No. Cores (just 1)
- Instruction Cache
- L3 Cache just L1+L2+RAM
- Instruction Set Architecture fixed to Armv8.4-a+sve

Benchmarks used

- STREAM Memory Bound
 - Sustained memory bandwidth benchmark
- MiniBude Compute Bound
 - Drug Screening Mini-app
- TeaLeaf Memory Bound
 - Heat Conduction Mini-app
- MiniSweep Compute bound for single core
 - Sn Radiation Transport Mini-app

Remarks on the benchmarks

- All problems *mostly* fit into L1 or L2 cache (larger takes too much time)
 - For example, STREAM = ~600KiB
- All compiled with Arm Compiler for Linux v23.04.1
 - Compiled statically with -O3, OpenMP (single threaded), and no MPI
 - SVE Vector Length set to "scalable"

SIMULATED SINGLE-CORE CYCLES COMPARED TO HARDWARE CYCLES ON MARVELL'S THUNDERX2 FOR OUR CHOSEN APPLICATIONS IN SIMENG WITH SST

	Simulated Cycles	Hardware Cycles	% Difference
STREAM	25,078,088	26,665,221	5.95%
MiniBude	42,436,227	48,778,524	13.05%
TeaLeaf	19,966,725	14,607,184	36.69%
MiniSweep	6,529,912	10,374,617	37.05%

Code Vectorisation

Poor Vectorisation?

- Compiler dependent, not the fault of the hardware!
- Some discrepancies between simulation vs hardware counting
- Huge performance implications
- Not the fault of *-march* flags etc
- Interesting to consider both well vs poorly vectorized performance

Machine Learning Model

- Surrogate model map simulation to ML
- Model significantly faster but more constrained
- Lots of high dimensional data
- Predicting numerical output regression
- Interested in learned data, not the usage

Decision Tree Regressor

Training the model

- 180,006 valid data entries
- Data sampled uniformly at random
- Collected across 10 Marvell Thunder-X2 nodes across ~3 days
- "Data" is runtime statistics for all applications + config
- 80/20 Train/Test split
- One tree per application

Model Validation

Metric of Importance

- Permutation Feature Importance
- Shuffle values of each column and predict
- Measure mean absolute error
- More error caused = more important feature
- Feature importance = percentage of summed error across all features

Feature Importance

STREAM	30.35	0.72	0.66	10.07	8.26	26.85	5.84	2.15	-0.02	8.98		- 6 - 5
TeaLeaf	0.07	35.19	35.94	4.82	3.36	0.12	8.40	4.46	2.34	0.08		- 4
Minisweep	-0.00	25.48	23.93	13.51	9.31	0.01	6.86	4.78	8.71	0.27		- 3
Mean	25.91	15.58	15.33	9.63	8.17	6.75	5.29	3.13	2.82	2.34		- 1
	Vector Length -	L1 Clock -	L1 latency -	ROB -	FP/SVE-Count -	L2 Size -	Cache-Line-Width	GP-Count -	Fetch-Block-Size -	RAM Timing -	•	- 0

- 70

-60

- 50

-40

- 30

20

10

Feature Importance (Fixed Vector Length)

miniBUDE - 39.71 43.79 2.62 2.39 0.01 0.08 STREAM - 13.40 1.35 10.31 1.26 11.77 3.60 TeaLeaf-7.91 4.35 0.06 1.86 0.56 3.05 0.04 4.58 Minisweep - 13.69 25.97 8.91 24.24 0.01 6.67 4.91 0.20 8.81 2.50 Mean - 17.85 16.67 16.52 16.35 9.36 4.18 3.36 2.90 6.61 ROB Clock L2 Size FP/SVE-Count Cache-Line-Width L1 latency Ц VL=128

Vector Length

ROB Size / FP/SVE Register Count

What we found

- Vector Length unlocks huge Data-Level-Parallelism (when it's used)
- Memory speed (and capacity) is key
- Frontend throttles, not accelerates

More interestingly...

- We can accurately map out known codes across a large search space
- Faster simulators and machines make data collection cheaper
- Decision Tree Regressors work nicely for modelling these highdimensional relationships
- Relatively easy to map new codes against a defined architecture space
- Reduces one context of simulation down to a faster surrogate

Future Work

- Multi-core/multi-node modelling to consider communication
- Modelling execution unit design
- Prediction of unseen codes with higher-capacity models
- Improved compiler cost-modelling to fully utilise hardware

Thank you for listening

Any questions?

zi23956@bristol.ac.uk

Full Search Space

Parameter	Range	Step
Vector Length (Bits)	{128-2048}	Powers of 2
Fetch-Block-Size	{4-2048}	Powers of 2
Loop-Buffer-Size	{1-512}	1
General Purpose (GP) Registers	{38-512}	8 starting from 40
Floating-Point (FP)/SVE Registers	{38-512}	8 starting from 40
Predicate Registers	{24-512}	8
Conditional Registers	{8-512}	8
Commit Pipeline Width	{1-64}	1
Frontend Pipeline Width	{1-64}	1
Load-Store-Queue Completiton Pipeline Width	{1-64}	1
Reorder Buffer (ROB) Size	{8-512}	4
Load Queue Size	{4-512}	4
Store Queue Size	{4-512}	4
Load Bandwidth (Bytes)	{16-1024}	Powers of 2
Store Bandwidth (Bytes)	{16-1024}	Powers of 2
Permitted Memory Requests Per Cycle	{1-32}	1
Permitted Memory Loads Per Cycle	$\{1-32\}$	1
Permitted Memory Stores Per Cycle	{1-32}	1

Parameter	Range	Step
Cache Line Width (clw)	{32-512}	Powers of 2
L1 Latency (Cycles)	{1-10}	1
L1 Clock Speed (GHz)	{1-5}	0.5
L1 Associativity	{1-16}	Powers of 2
L1 Size (KiB)	{16-2048}	Powers of 2
L2 Latency (Cycles)	{6-50}	1
L2 Clock Speed (GHz)	{1-5}	0.5
L2 Associativity	{1-16}	Powers of 2
L2 Size (MiB)	$\{0.25 - 64\}$	Powers of 2
Ram Timing (ns)	{40-250}	10
Ram Clock (GHz)	{1-5}	0.5
Ram Size (GiB)	8	N/A

Benchmark Parameters

Application	Input options	Input Values		
STDEAM	Programming Model	OpenMP (single thread)		
SIKEAW	Stream Array Size	200000		
	Programming Model	OpenMP (single thread)		
	Benchmark Name	bm1		
MiniBude	Atoms	26		
	Poses	64		
	Iterations	1		
TeaLeaf	Programming Model	OpenMP (single thread)		
	Dimensions	2D		
	Number of cells along $\{X, Y\}$	{32, 32}		
	Domain {xmin, xmax}, {ymin, ymax}	$\{0, 10\}, \{0, 10\}$		
	Solver Method	Conjugate Gradient		
	Initial Timestep	0.004		
	End Step	5		
	Max Iterations	10000		
MiniSweep	Programming Model	OpenMP (single thread)		
	Global number of gridcells along {X, Y, Z}	$\{4, 4, 4\}$		
	Total number of energy groups	1		
	Number of angles for each octant direction	32		
	Sweep Iterations	1		
	Sweep blocks used to tile the Z dimension	1		