Al-Assisted Design

18th
. Nov -,
Space Analysis of N 2024 Sk

High-Performance '
Arm Processors

Joseph Moore
Tom Deakin
Simon Mclntosh-Smith

-

by

:"'
>

(,."/.\'A."' /(

Unlver‘ﬁlty of Br~|stoJ ngh Perfor

What's the limit of a CPU?

* Consider the trace of executed instructions
* Critical path = longest chain of data dependent instructions

* Cycles on “perfect” CPU = latency of critical path
* Bottleneck is the program!

* How can hardware converge to this?

Critical Path

Instruction Stream ™ T2 T3

T T2 T3 T4 T5 T6 T7

What this work does

* Quantifies impact of single-core bottlenecks

* Predicts no. cycles in known HPC applications for different hardwar
configurations

* Does so through Machine Learning
* Learn what the model learns — how do parameters influence cycles?

Simulate benchmark ‘ | s ‘ Predict benchmark | s .
X 200,000 [usmg random config Train ML model cycles given config Validate Model }
Introspect for
I parameter impact I ‘

__J

Related work

e 2006-2007 “Golden Age”
* PJ.Joseph et al, Lee et al, Dubach et al

* Lots of work using traditional ML/AIl for parameter searches on few
parameters

* Significant jumps in computer architecture since
* Vectors i.e. Scalable Vector Extension are now commonly used!

* Most work since is focused or models power, space etc.
* Gap in updated, broad view of core architecture

SimEng — Our Simulation Framework

* Cycle-approximate Out-Of-Order CPU simulator

* Allows simulation of every stage of the pipeline

e SST integration for memory model

* ~1 MIPS on moderate hardware

e Easy to use - Simple YAML to define CPU properties

What we are modelling

Frontend
Registers Pipeline
General EP/SVE
Purpose Reorder - .
Buffer :
) Block Size
Size
Conditional Predicate
Loop Load
Buffer Queue
Size Size
Store Commit
Queue Pipeline
Vector Length Size Width
Frontend LSQ
Pipeline Completion
Width Width

Memory
L1 Cache

Size Latency Clock Speed
L2 Cache

Size Latency Clock Speed

Load Store Cache Line
Bandwidth Bandwidth Width
Max Memory Max Max

Reqgs/Cycle Loads/Cycle Stores/Cycle

What we are not modelling

e Reservation Stations
 Execution Units

* No. Cores (just 1)
* Instruction Cache

e L3 Cache —just L1+L2+RAM
e Instruction Set Architecture — fixed to Armv8.4-a+sve

Benchmarks used

e STREAM — Memory Bound
e Sustained memory bandwidth benchmark

* MiniBude — Compute Bound
* Drug Screening Mini-app

* TeaLeaf — Memory Bound
e Heat Conduction Mini-app

* MiniSweep — Compute bound for single core
* Sn Radiation Transport Mini-app

Remarks on the benchmarks

 All problems mostly fit into L1 or L2 cache (larger takes too much
time)

* For example, STREAM = ~600KiB

* All compiled with Arm Compiler for Linux v23.04.1

e Compiled statically with —03, OpenMP (single threaded), and no MPI
* SVE Vector Length set to “scalable”

SIMULATED SINGLE-CORE CYCLES COMPARED TO HARDWARE CYCLES
ON MARVELL'S THUNDERX?2 FOR OUR CHOSEN APPLICATIONS IN
SIMENG WITH SST

Simulated Cycles | Hardware Cycles | % Difference

STREAM 25,078.088 26,665,221 5.95%
MiniBude 42,436,227 48.778.,524 13.05%
Teal.eaf 19,966,725 14,607,184 36.69%

MiniSweep | 6,529,012 10,374,617 37.05% 6

Code Vectorisation

% Vectorised Instructions Retired

70

60

504

40

30

201

10

128

B
f::"::-'-” o o
512 Hardware (512)

Vector Length (bits)

o o

1024

B MiniBUDE
N STREAM
N Tealeaf
I Minisweep

2048

Poor Vectorisation?

v B MiniBUDE

* Compiler dependent, not the faultof ., o —Er
the hardware!

(=31
(=]

* Some discrepancies between
simulation vs hardware counting

L
(=]

.
o

* Huge performance implications

(*1}
(=]

P
(=]

* Not the fault of -march flags etc

% Vectorised Instructions Retired

=
(=]

* Interesting to consider both well vs
poorly vectorized performance

(=]

o ! o i .
256 512 Hardware (312) 1024 2048

Vector Length (bits)

Machine Learning Model

e Surrogate model — map simulation to ML

* Model significantly faster but more
constrained

* Lots of high dimensional data
* Predicting numerical output — regression
* Interested in learned data, not the usage

Complex Core Simulator

/

SimEng

\

Simple Black-
Box Model

Decision Tree Regressor

VL > 2567 Regression Model

ROB > 1607 ROB > 1287

No. Cycles

L1 LatenCy > 47

Variable x

Training the model

e 180,006 valid data entries

e Data sampled uniformly at random

* Collected across 10 Marvell Thunder-X2 nodes across ~3 days
e “Data” is runtime statistics for all applications + config

* 80/20 Train/Test split

* One tree per application

Model Validation

100_ I miniBUDE N
N STREAM o
N Tealeaf

[Minisweep

80+

60+

40+

% of predictions

20+

1% 2% 5% 10% 25%
Confidence Interval

Metric of Importance

* Permutation Feature Importance
 Shuffle values of each column and predict

* Measure mean absolute error
* More error caused = more important feature
* Feature importance = percentage of summed error across all features

Feature Importance

mMiniBUDE - 0.00 -70

-60

STREAM BELECREERZ

Tealeaf

Minisweep

Mean

L1 Clock
L1 latency
ROB
GP-Count
RAM Timing

)
[®)]
o
-
[
o
—
]
>

FP/SVE-Count
Cache-Line-Width
Fetch-Block-Size

eature Importance (Fixed Vector Length

.50 '50

miniBUDE - 2 0.00 g miniBUDE

-40 -40

STREAM STREAM

Tealeaf Tealeaf

Minisweep Minisweep 2461 | -0.03

Mean Mean 18.06 10.64

Load
ROB
Load

4]
o
o

L1 Clock
FP/SVE-Count

L1 latency

L2 Size
Cache-Line-Width
GP-Count

RAM Timing
Fetch-Block-Size
L1 Clock
FP/SVE-Count

L1 latency

L2 Size
Cache-Line-Width
GP-Count

RAM Timing
Fetch-Block-Size

=2048

V

<
—

I
=
N
oo

—

Vector Length

128 mean

Mean speedup against VL

[0

~

[=)]

wu

S

w

N

=@= miniBUDE

| =@= STREAM

=@= Tealeaf
=@= Minisweep

. . -

L

128 256 512 1024 2048
Vector Length

8 mean

Mean speedup against ROB

L

N

(1]

1%

ROB Size / FP/SVE Register Count

I
miniBUDE
STREAM
Tealeaf
Minisweep

bt

b oAk o B 0 O Lk b @ N
S I T S N S S

Reorder Buffer Size

> 0 o B O
S G S

8 mean

Mean speedup against ROB

4.0

-t
in

[
w

1.0

bt

miniBUDE
STREAM
Tealeaf
Minisweep

R O
FloatingPoint/SVE-Count

What we found

* Vector Length unlocks huge
Data-Level-Parallelism
(when it’s used)

 Memory speed (and
capacity) is key

* Frontend throttles, not
accelerates

Relies On

Larger Vectors Faster Memory

Enables \

Relles On Enables

/Enables J
More Execution Unlts}
KRelles On

Wider Frontend

More interestingly...

* We can accurately map out known codes across a large search spac
 Faster simulators and machines make data collection cheaper

* Decision Tree Regressors work nicely for modelling these high-
dimensional relationships

* Relatively easy to map new codes against a defined architecture space
* Reduces one context of simulation down to a faster surrogate

Future Work

* Multi-core/multi-node modelling to consider communication
* Modelling execution unit design

* Prediction of unseen codes with higher-capacity models
* Improved compiler cost-modelling to fully utilise hardware

Thank you for listening

Any questions?

zi23956@bristol.ac.uk

https://uob-hpc.github.io/SimEng a

Full Search Space

Parameter Range Step

Cache Line Width (clw) | {32-512} Powers of 2
L1 Latency (Cycles) {1-10}]

L1 Clock Speed (GHz) {1-5} 0.5

L1 Associativity {1-16} Powers of 2
L1 Size (KiB) {16-2048} Powers of 2
L2 Latency (Cycles) {6-50} 1

L2 Clock Speed (GHz) {1-5} 0.5

L2 Associativity {1-16} Powers of 2
L2 Size (MiB) {0.25 - 64} | Powers of 2
Ram Timing (ns) {40-250} 10

Ram Clock (GHz) {1-5} 0.5

Ram Size (GiB) 8 N/A

Parameter Range Step

Vector Length (Bits) {128-2048} | Powers of 2
Fetch-Block-Size {4-2048} Powers of 2
Loop-Buffer-Size {1-512} 1

General Purpose (GP) Registers {38-512} 8 starting from 40
Floating-Point (FP)/SVE Registers {38-512} 8 starting from 40
Predicate Registers {24-512} 8

Conditional Registers {8-512} 8

Commit Pipeline Width {1-64} 1

Frontend Pipeline Width {1-64} [
Load-Store-Queue Completiton Pipeline Width | {1-64} [

Reorder Buffer (ROB) Size {8-512} 4

Load Queue Size {4-512} 4

Store Queue Size {4-512} 4

Load Bandwidth (Bytes) {16-1024} Powers of 2

Store Bandwidth (Bytes) {16-1024} Powers of 2
Permitted Memory Requests Per Cycle {1-32} 1

Permitted Memory Loads Per Cycle {1-32} 1

Permitted Memory Stores Per Cycle {1-32} 1

Benchmark Parameters

Application | Input options Input Values
Programming Model OpenMP (single thread)

STREAM Stream Array Size 200000
Programming Model OpenMP (single thread)
Benchmark Name bml

MiniBude Atoms 26
Poses 64
Iterations 1
Programming Model OpenMP (single thread)
Dimensions 2D
Number of cells along {X, Y} {32, 32}

Teal eaf Domain {xmin, xmax }, {ymin, ymax} {0, 10}, {0, 10}
Solver Method Conjugate Gradient
Initial Timestep 0.004
End Step 5
Max Iterations 10000
Programming Model OpenMP (single thread)
Global number of gridcells along {X, Y, Z} {4, 4, 4}

. Total number of energy groups 1

MiniSweep Number of angles f"org za%h olc::'tant direction 32
Sweep Iterations 1
Sweep blocks used to tile the Z dimension 1

	Slide 1
	Slide 2: What’s the limit of a CPU?
	Slide 3: What this work does
	Slide 4: Related work
	Slide 5: SimEng – Our Simulation Framework
	Slide 6: What we are modelling
	Slide 7: What we are not modelling
	Slide 8: Benchmarks used
	Slide 9: Remarks on the benchmarks
	Slide 10: Code Vectorisation
	Slide 11: Poor Vectorisation?
	Slide 12: Machine Learning Model
	Slide 13: Decision Tree Regressor
	Slide 14: Training the model
	Slide 15: Model Validation
	Slide 16: Metric of Importance
	Slide 17: Feature Importance
	Slide 18: Feature Importance (Fixed Vector Length)
	Slide 19: Vector Length
	Slide 20: ROB Size / FP/SVE Register Count
	Slide 21: What we found
	Slide 22: More interestingly…
	Slide 23: Future Work
	Slide 24: Thank you for listening
	Slide 25: Full Search Space
	Slide 26: Benchmark Parameters

