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What's the limit of a CPU?

* Consider the trace of executed instructions
* Critical path = longest chain of data dependent instructions

* Cycles on “perfect” CPU = latency of critical path
* Bottleneck is the program!

* How can hardware converge to this?

Critical Path

Instruction Stream ™ T2 T3
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What this work does

* Quantifies impact of single-core bottlenecks

* Predicts no. cycles in known HPC applications for different hardwar
configurations

* Does so through Machine Learning
* Learn what the model learns — how do parameters influence cycles?
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Related work

e 2006-2007 “Golden Age”
* PJ.Joseph et al, Lee et al, Dubach et al

* Lots of work using traditional ML/AIl for parameter searches on few
parameters

* Significant jumps in computer architecture since
* Vectors i.e. Scalable Vector Extension are now commonly used!

* Most work since is focused or models power, space etc.
* Gap in updated, broad view of core architecture



SimEng — Our Simulation Framework

* Cycle-approximate Out-Of-Order CPU simulator

* Allows simulation of every stage of the pipeline

e SST integration for memory model

* ~1 MIPS on moderate hardware

e Easy to use - Simple YAML to define CPU properties




What we are modelling
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What we are not modelling

e Reservation Stations
 Execution Units

* No. Cores (just 1)
* Instruction Cache

e L3 Cache —just L1+L2+RAM
e Instruction Set Architecture — fixed to Armv8.4-a+sve



Benchmarks used

e STREAM — Memory Bound
e Sustained memory bandwidth benchmark

* MiniBude — Compute Bound
* Drug Screening Mini-app

* TeaLeaf — Memory Bound
e Heat Conduction Mini-app

* MiniSweep — Compute bound for single core
* Sn Radiation Transport Mini-app



Remarks on the benchmarks

 All problems mostly fit into L1 or L2 cache (larger takes too much
time)

* For example, STREAM = ~600KiB

* All compiled with Arm Compiler for Linux v23.04.1

e Compiled statically with —03, OpenMP (single threaded), and no MPI
* SVE Vector Length set to “scalable”

SIMULATED SINGLE-CORE CYCLES COMPARED TO HARDWARE CYCLES
ON MARVELL'S THUNDERX?2 FOR OUR CHOSEN APPLICATIONS IN
SIMENG WITH SST

Simulated Cycles | Hardware Cycles | % Difference

STREAM 25,078.088 26,665,221 5.95%
MiniBude 42,436,227 48.778.,524 13.05%
Teal.eaf 19,966,725 14,607,184 36.69%

MiniSweep | 6,529,012 10,374,617 37.05% 6



Code Vectorisation

% Vectorised Instructions Retired
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Poor Vectorisation?

v B MiniBUDE

* Compiler dependent, not the faultof ., o —Er
the hardware!
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* Some discrepancies between
simulation vs hardware counting
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* Not the fault of -march flags etc
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* Interesting to consider both well vs
poorly vectorized performance
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Machine Learning Model

e Surrogate model — map simulation to ML

* Model significantly faster but more
constrained

* Lots of high dimensional data
* Predicting numerical output — regression
* Interested in learned data, not the usage

Complex Core Simulator

/

SimEng
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Simple Black-
Box Model




Decision Tree Regressor

VL > 2567 Regression Model

ROB > 1607 ROB > 1287

No. Cycles

L1 LatenCy > 47

Variable x




Training the model

e 180,006 valid data entries

e Data sampled uniformly at random

* Collected across 10 Marvell Thunder-X2 nodes across ~3 days
e “Data” is runtime statistics for all applications + config

* 80/20 Train/Test split

* One tree per application




Model Validation
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Metric of Importance

* Permutation Feature Importance
 Shuffle values of each column and predict

* Measure mean absolute error
* More error caused = more important feature
* Feature importance = percentage of summed error across all features



Feature Importance
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eature Importance (Fixed Vector Length
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Vector Length
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What we found

* Vector Length unlocks huge
Data-Level-Parallelism
(when it’s used)

 Memory speed (and
capacity) is key

* Frontend throttles, not
accelerates
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Larger Vectors Faster Memory

Enables \
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More interestingly...

* We can accurately map out known codes across a large search spac
 Faster simulators and machines make data collection cheaper

* Decision Tree Regressors work nicely for modelling these high-
dimensional relationships

* Relatively easy to map new codes against a defined architecture space
* Reduces one context of simulation down to a faster surrogate



Future Work

* Multi-core/multi-node modelling to consider communication
* Modelling execution unit design

* Prediction of unseen codes with higher-capacity models
* Improved compiler cost-modelling to fully utilise hardware



Thank you for listening

Any questions?

zi23956@bristol.ac.uk

https://uob-hpc.github.io/SimEng a



Full Search Space

Parameter Range Step

Cache Line Width (clw) | {32-512} Powers of 2
L1 Latency (Cycles) {1-10} ]

L1 Clock Speed (GHz) {1-5} 0.5

L1 Associativity {1-16} Powers of 2
L1 Size (KiB) {16-2048} Powers of 2
L2 Latency (Cycles) {6-50} 1

L2 Clock Speed (GHz) {1-5} 0.5

L2 Associativity {1-16} Powers of 2
L2 Size (MiB) {0.25 - 64} | Powers of 2
Ram Timing (ns) {40-250} 10

Ram Clock (GHz) {1-5} 0.5

Ram Size (GiB) 8 N/A

Parameter Range Step

Vector Length (Bits) {128-2048} | Powers of 2
Fetch-Block-Size {4-2048} Powers of 2
Loop-Buffer-Size {1-512} 1

General Purpose (GP) Registers {38-512} 8 starting from 40
Floating-Point (FP)/SVE Registers {38-512} 8 starting from 40
Predicate Registers {24-512} 8

Conditional Registers {8-512} 8

Commit Pipeline Width {1-64} 1

Frontend Pipeline Width {1-64} [
Load-Store-Queue Completiton Pipeline Width | {1-64} [

Reorder Buffer (ROB) Size {8-512} 4

Load Queue Size {4-512} 4

Store Queue Size {4-512} 4

Load Bandwidth (Bytes) {16-1024} Powers of 2

Store Bandwidth (Bytes) {16-1024} Powers of 2
Permitted Memory Requests Per Cycle {1-32} 1

Permitted Memory Loads Per Cycle {1-32} 1

Permitted Memory Stores Per Cycle {1-32} 1




Benchmark Parameters

Application | Input options Input Values
Programming Model OpenMP (single thread)

STREAM Stream Array Size 200000
Programming Model OpenMP (single thread)
Benchmark Name bml

MiniBude Atoms 26
Poses 64
Iterations 1
Programming Model OpenMP (single thread)
Dimensions 2D
Number of cells along {X, Y} {32, 32}

Teal eaf Domain {xmin, xmax }, {ymin, ymax} {0, 10}, {0, 10}
Solver Method Conjugate Gradient
Initial Timestep 0.004
End Step 5
Max Iterations 10000
Programming Model OpenMP (single thread)
Global number of gridcells along {X, Y, Z} {4, 4, 4}

. Total number of energy groups 1

MiniSweep Number of angles f"org za%h olc::'tant direction 32
Sweep Iterations 1
Sweep blocks used to tile the Z dimension 1
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