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What’s the limit of a CPU?

• Consider the trace of executed instructions
• Critical path = longest chain of data dependent instructions

• Cycles on “perfect” CPU = latency of critical path
• Bottleneck is the program!

• How can hardware converge to this?
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What this work does

• Quantifies impact of single-core bottlenecks

• Predicts no. cycles in known HPC applications for different hardware 
configurations

• Does so through Machine Learning

• Learn what the model learns – how do parameters influence cycles?
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Related work

• 2006-2007 “Golden Age”
• P.J.Joseph et al, Lee et al, Dubach et al

• Lots of work using traditional ML/AI for parameter searches on few 
parameters

• Significant jumps in computer architecture since
• Vectors i.e. Scalable Vector Extension are now commonly used!

• Most work since is focused or models power, space etc.
• Gap in updated, broad view of core architecture
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SimEng – Our Simulation Framework

• Cycle-approximate Out-Of-Order CPU simulator

• Allows simulation of every stage of the pipeline

• SST integration for memory model

• ~1 MIPS on moderate hardware

• Easy to use - Simple YAML to define CPU properties
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https://uob-hpc.github.io/SimEng



What we are modelling
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What we are not modelling

• Reservation Stations

• Execution Units

• No. Cores (just 1)

• Instruction Cache

• L3 Cache – just L1+L2+RAM

• Instruction Set Architecture – fixed to Armv8.4-a+sve
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Benchmarks used

• STREAM – Memory Bound
• Sustained memory bandwidth benchmark

• MiniBude – Compute Bound
• Drug Screening Mini-app

• TeaLeaf – Memory Bound
• Heat Conduction Mini-app

• MiniSweep – Compute bound for single core
• Sn Radiation Transport Mini-app
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Remarks on the benchmarks

• All problems mostly fit into L1 or L2 cache (larger takes too much 
time)
• For example, STREAM = ~600KiB

• All compiled with Arm Compiler for Linux v23.04.1
• Compiled statically with –O3, OpenMP (single threaded), and no MPI

• SVE Vector Length set to “scalable”
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Code Vectorisation
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Poor Vectorisation?

• Compiler dependent, not the fault of 
the hardware!

• Some discrepancies between 
simulation vs hardware counting

• Huge performance implications

• Not the fault of -march flags etc

• Interesting to consider both well vs 
poorly vectorized performance
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Machine Learning Model

• Surrogate model – map simulation to ML

• Model significantly faster but more 
constrained

• Lots of high dimensional data

• Predicting numerical output – regression

• Interested in learned data, not the usage
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Decision Tree Regressor
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Training the model

• 180,006 valid data entries

• Data sampled uniformly at random

• Collected across 10 Marvell Thunder-X2 nodes across ~3 days

• “Data” is runtime statistics for all applications + config

• 80/20 Train/Test split

• One tree per application
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Model Validation
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Metric of Importance

• Permutation Feature Importance

• Shuffle values of each column and predict

• Measure mean absolute error

• More error caused = more important feature

• Feature importance = percentage of summed error across all features
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Feature Importance
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Feature Importance (Fixed Vector Length)

18VL=128 VL=2048



Vector Length
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ROB Size / FP/SVE Register Count
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What we found

• Vector Length unlocks huge 
Data-Level-Parallelism 
(when it’s used)

• Memory speed (and 
capacity) is key

• Frontend throttles, not 
accelerates
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More interestingly…

• We can accurately map out known codes across a large search space 

• Faster simulators and machines make data collection cheaper

• Decision Tree Regressors work nicely for modelling these high-
dimensional relationships

• Relatively easy to map new codes against a defined architecture space

• Reduces one context of simulation down to a faster surrogate
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Future Work

• Multi-core/multi-node modelling to consider communication

• Modelling execution unit design

• Prediction of unseen codes with higher-capacity models

• Improved compiler cost-modelling to fully utilise hardware
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Thank you for listening
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Any questions?

https://uob-hpc.github.io/SimEng

zi23956@bristol.ac.uk



Full Search Space
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Benchmark Parameters
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