
1

AI-Assisted Design 
Space Analysis of 
High-Performance 

Arm Processors

Joseph Moore
Tom Deakin
Simon McIntosh-Smith

University of Bristol High Performance Computing Group

18th 
Nov 
2024



What’s the limit of a CPU?

• Consider the trace of executed instructions
• Critical path = longest chain of data dependent instructions

• Cycles on “perfect” CPU = latency of critical path
• Bottleneck is the program!

• How can hardware converge to this?

2



What this work does

• Quantifies impact of single-core bottlenecks

• Predicts no. cycles in known HPC applications for different hardware 
configurations

• Does so through Machine Learning

• Learn what the model learns – how do parameters influence cycles?

3



Related work

• 2006-2007 “Golden Age”
• P.J.Joseph et al, Lee et al, Dubach et al

• Lots of work using traditional ML/AI for parameter searches on few 
parameters

• Significant jumps in computer architecture since
• Vectors i.e. Scalable Vector Extension are now commonly used!

• Most work since is focused or models power, space etc.
• Gap in updated, broad view of core architecture

4



SimEng – Our Simulation Framework

• Cycle-approximate Out-Of-Order CPU simulator

• Allows simulation of every stage of the pipeline

• SST integration for memory model

• ~1 MIPS on moderate hardware

• Easy to use - Simple YAML to define CPU properties

5

https://uob-hpc.github.io/SimEng



What we are modelling

6



What we are not modelling

• Reservation Stations

• Execution Units

• No. Cores (just 1)

• Instruction Cache

• L3 Cache – just L1+L2+RAM

• Instruction Set Architecture – fixed to Armv8.4-a+sve

7



Benchmarks used

• STREAM – Memory Bound
• Sustained memory bandwidth benchmark

• MiniBude – Compute Bound
• Drug Screening Mini-app

• TeaLeaf – Memory Bound
• Heat Conduction Mini-app

• MiniSweep – Compute bound for single core
• Sn Radiation Transport Mini-app

8



Remarks on the benchmarks

• All problems mostly fit into L1 or L2 cache (larger takes too much 
time)
• For example, STREAM = ~600KiB

• All compiled with Arm Compiler for Linux v23.04.1
• Compiled statically with –O3, OpenMP (single threaded), and no MPI

• SVE Vector Length set to “scalable”

9



Code Vectorisation

10



Poor Vectorisation?

• Compiler dependent, not the fault of 
the hardware!

• Some discrepancies between 
simulation vs hardware counting

• Huge performance implications

• Not the fault of -march flags etc

• Interesting to consider both well vs 
poorly vectorized performance

11



Machine Learning Model

• Surrogate model – map simulation to ML

• Model significantly faster but more 
constrained

• Lots of high dimensional data

• Predicting numerical output – regression

• Interested in learned data, not the usage

12



Decision Tree Regressor

13



Training the model

• 180,006 valid data entries

• Data sampled uniformly at random

• Collected across 10 Marvell Thunder-X2 nodes across ~3 days

• “Data” is runtime statistics for all applications + config

• 80/20 Train/Test split

• One tree per application

14



Model Validation

15



Metric of Importance

• Permutation Feature Importance

• Shuffle values of each column and predict

• Measure mean absolute error

• More error caused = more important feature

• Feature importance = percentage of summed error across all features

16



Feature Importance

17



Feature Importance (Fixed Vector Length)

18VL=128 VL=2048



Vector Length

19



ROB Size / FP/SVE Register Count

20



What we found

• Vector Length unlocks huge 
Data-Level-Parallelism 
(when it’s used)

• Memory speed (and 
capacity) is key

• Frontend throttles, not 
accelerates

21



More interestingly…

• We can accurately map out known codes across a large search space 

• Faster simulators and machines make data collection cheaper

• Decision Tree Regressors work nicely for modelling these high-
dimensional relationships

• Relatively easy to map new codes against a defined architecture space

• Reduces one context of simulation down to a faster surrogate

22



Future Work

• Multi-core/multi-node modelling to consider communication

• Modelling execution unit design

• Prediction of unseen codes with higher-capacity models

• Improved compiler cost-modelling to fully utilise hardware

23



Thank you for listening

24

Any questions?

https://uob-hpc.github.io/SimEng

zi23956@bristol.ac.uk



Full Search Space

25



Benchmark Parameters


	Slide 1
	Slide 2: What’s the limit of a CPU?
	Slide 3: What this work does
	Slide 4: Related work
	Slide 5: SimEng – Our Simulation Framework
	Slide 6: What we are modelling
	Slide 7: What we are not modelling
	Slide 8: Benchmarks used
	Slide 9: Remarks on the benchmarks
	Slide 10: Code Vectorisation
	Slide 11: Poor Vectorisation?
	Slide 12: Machine Learning Model
	Slide 13: Decision Tree Regressor
	Slide 14: Training the model
	Slide 15: Model Validation
	Slide 16: Metric of Importance
	Slide 17: Feature Importance
	Slide 18: Feature Importance (Fixed Vector Length)
	Slide 19: Vector Length
	Slide 20: ROB Size / FP/SVE Register Count
	Slide 21: What we found
	Slide 22: More interestingly…
	Slide 23: Future Work
	Slide 24: Thank you for listening
	Slide 25: Full Search Space
	Slide 26: Benchmark Parameters

