ool

Performance Analysis of Runtime Handling of
Zero-Copy for OpenMP® Programs on MI300A
APUs

Carlo Bertolli
AMD ROCm Team

AMD 1

together we advance_
* AMD Instinct™ MI300A series accelerators

Motivation for Accelerated Processing Units (APUs)

By integrating "Zen 4’ CPU cores and GPU accelerators,
you can achieve high efficiency by
, transparently

managing CPU and GPU caches, offloading tasks easily ;mm g ‘.”"
between GPU and CPU, and [.] = "
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-

SO 807044 com g

by Eumnnrim

docs/data-sheets/amd-instinct-mi300a-data-sheet.pdf

https://asc.linl.gov/exascale/el-capitan

HPE Cray Supercomputing EX255a
The features of this accelerator blade are as follows:
e Two 4-socket AMD Instinct™ MI300a Accelerator APU nodes
128GB HBM3 per APU

Up to 8 HPE Slingshot 200Gbit/sec ports per blade

O or 1 local NVMe M.2 SSD per node (up to 2 per blade)
2 Board Management Controllers (BMC) per blade
Cooled with cold plate

- ——— https://www.hpe.com/psnow/doc/a00094635enw

https://www.hpcwire.com/2023/01/05/amd-shows- AMDZ

off-mi300-chip-for-the-first-time/ together we advance

[Public]

Discrete GPU...

MI250X"

.) AMDZ
. AMD Instinct™ MI200 series accelerators together we advance_

[Public]

Discrete GPU... and APU Architecture

Mi250X

MI300A “APU”

1o L]
e =]
=l

AMDZ1
together we advance

[Public]

Discrete GPU... and APU Architecture
MI250X MI300A “APU”

AMDZ1
together we advance

[Public]

Discrete GPU... and APU Architecture
MI250X MI300A “APU”

m (@ [DmE
|

ol |DmEn
=]

NSRS

AMDZ1
together we advance

Programming an APU in 2024

HIP Applications
Abstraction layers hiding memory
management
Re-implementation for APU should be
relatively straightforward

DSL and high level languages

Raja, Kokkos, DeVito, SYCL++®
Flip a switch

OpenMP memory mapping
double *ptr = malloc(1024*sizeof(double));
#pragma omp target map(ptr[:1024])

ptr[0] = 1.0;

map(ptr[0:1024])
Memory ptr[0] to ptr[1023] is added to device data
environment

Implementations
dGPU: device memory allocation, D2H/H2D copies (copy)

APU: just pass the pointer (zero-copy)

AMDZU

together we advance_

[Public]

Programming an MI300A ‘APU’ with OpenMP

Runtime Error

AMDZN

9 together we advance_

[Public]

Programming an MI300A ‘APU’ with OpenMP

OMPX_EAGER_ZERO_COPY_MAPS=0 OMPX_EAGER_ZERO_COPY_MAPS=1

Runtime Error
AMDZ

10 together we advance_

How to access CPU-allocated Memory on the GPU? XNACK

kernel<<...>>(ptr);

ptr = malloc(1024*sizeof(double));

AMDZU

11 together we advance_

How to access CPU-allocated Memory on the GPU? XNACK or Prefault

reg = ptr[0]

kernel<<...>>(ptr);
kernel<<...>>(ptr); (ptr)

ptr = malloc(1024*sizeof(double)); ptr = malloc(1024*sizeof(double));

AMDZU

12 together we advance_

13

Programming an MI300A ‘APU’ with OpenMP

Compiler Flags

-fopenmp -offload-arch=gfx942

Programming Mode

Default

non-unified_shared_memory
using map clauses

unified_shared_memory
#pragma omp requires unified_shared_memory
or
--fopenmp-force-usm

Runtime State

Unified Memory Enabled
HSA_XNACK=1

Implicit (or Auto) Zero-copy

Unified Shared Memory

Unified Memory Disabled
HSA_XNACK=0

OMPX_EAGER _ZERO_COPY_MAPS=0

OMPX_EAGER _ZERO_COPY_MAPS=1

Copy

Eager Maps

Runtime Error

AMDZU

together we advance_

14

Experiments

Platform

Single socket MI300A node

ROCm 6.1.1 or later

Transparent Huge Pages enabled for 2MB pages
Ubuntu® 22.04

OMCPack NiO performance tests, S2-5128 data sizes
Effects of data prefetching and streaming

SPECaccel® 2023 C/C++ benchmarks
Corner cases

All Results are ratios: Copy/* (* = Implicit Zero-Copy, USM, Eager Maps)

AMDZU

together we advance_

15

QMCPack Problem Size Scaling

Ratio between Copy/Zero-Copy configuratoins

2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0

10penMP Thread

Implicit Zero-Copy ====Unified Shared Memory == Eager Maps

2.4

2.2
2.0

1.8

1.6

1.4

1.2 9\‘3\

Y Y S8 S16 S24 S32 S48 Se64 S128
Problem Size

4 OpenMP Threads

Implicit Zero-Copy ====Unified Shared Memory == Eager Maps

M_

N

52 54 S8 516 S24 532 S48 S64 5128

Problem Size

2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0

2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0

2 OpenMP Threads

Implicit Zero-Copy = === Unified Shared Memory == Eager Maps

S2 Y S8 S16 S24 S32 S48 S64 5128
Problem Size

8 OpenMP Threads

Implicit Zero-Copy ===Unified Shared Memory == Eager Maps

N

e

w ey,

S2 S4 S8 S16 S24 S32 S48 Se4 S128
Problem Size

AMDZU

together we advance_

QMCPack Problem Size Scaling

2.4
2.2
2.0
1.8
1.6

Ratio between Copy/Zero-Copy configuratoins

16

2.4
2.2
2.0
1.8
1.6

10penMP Thread

Implicit Zero-Copy ====Unified Shared Memory == Eager Maps

Y Y S8 S16 S24 S32 S48 Se64 S128
Problem Size

4 OpenMP Threads

Implicit Zero-Copy ====Unified Shared Memory == Eager Maps

M_

N

S4 S8 S16 S24 S32 S48 S64 S128
Problem Size

2.4
2.2
2.0
1.8
1.6

2.4
2.2
2.0
1.8
1.6

Implicit Zero-Copy

2 OpenMP Threads

== Unified Shared Memory

= Eager Maps

52 54

S8 S16 S24 S32
Problem Size
8 OpenMP Threads

548

564 5128

Implicit Zero-Copy ===Unified Shared Memory == Eager Maps

N

e

~——

—

b2 5S4

S8

516

S24 S32
Problem Size

548

Se4

5128

AMDZU

together we advance_

17

Why is Zero-Copy Winning?

HSA™/ ROCr call Use Copy Implicit Zero-Copy Copy/Implicit Z-C
1 0penMP host thread Hcalls Hcalls ratio
signal wait scacquire Kernel completion 351,653 99,627 3.53
memory pool allocate Allocate device memory 23,277 19 1.23x10°
Mmermory async copy 307,607 3 1.03x10°

; Memory copy
signal async handler 194,848 0 \2A

AMDZU

together we advance_

Why Increasing Problem Size Hurts Zero-Copy?

10penMP Thread

Implicit Zero-Copy = —Unified Shared Memory = ——Eager Maps

2.4
p.
2.0
1.8
1.6
1.4
1.2
1.0

S2 S4 S8 S16 S24 S32 548 S64 5128

Problem Size
AMDZU

together we advance_

19

Why Increasing Problem Size Hurts Zero-Copy?

2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0

10penMP Thread

Implicit Zero-Copy ——=Unified Shared Memory ———Eager Maps

52 S4 S8 S16 S24 S32 S48 S64 S128
Problem Size

Number of (HSA) runtime calls
Copy: 5X
Implicit Zero-Copy: 10X
Copy call latency >> Implicit Zero-Copy

Larger problem size means:
Larger data structures
Overhead does not increase
More time spent in kernels

Data prefetching and data streaming

Amortize extra memory copies

AMDZU

together we advance_

Why Eager Maps Suffers at 8 OpenMP Host Threads?

8 OpenMP Threads

Implicit Zero-Copy ===Unified Shared Memory —=Eager Maps

2.4

p.

2.0

A\\ \
1..8 \ /, §

——

S16 S24 S32 S48 S64 S128
Problem Size

AMDZU

together we advance_

Why Eager Maps Suffers at 8 OpenMP Host Threads?

8 OpenMP Threads
Implicit Zero-Copy Unified Shared Memory ———Eager Maps
PR
2.2 /\\—/\
2.0 \
1.8 —

1.4

1.2

1.0

5S4

S8 S16 S24 S32 S48 S64 5128

Problem Size

21

8 threads asking the driver to prefault

memory
Synchronous call
Contention on same driver

Not visible when most of the time is

spend in kernel (5128)

AMDZU

together we advance_

QMCPack OpenMP Host Thread Scaling

S8 Problem Size S32 Problem Size
Implicit Zero-Copy ====Unified Shared Memory ==—Eager Maps Implicit Zero-Copy === Unified Shared Memory == Eager Maps
2.0 / 2.0 e
1.5 /’; 1.5 /‘_
1.0 1.0
1 2 4 8 1 P 4 8
CPU threads # CPU threads
S64 Problem Size 5128 Problem Size
Implicit Zero-Copy ====Unified Shared Memory ==Eager Maps Implicit Zero-Copy = === Unified Shared Memory == Eager Maps
2.0 — 2.0
N / " /
1.0 1.0
1 2 4 8 1 P 4 8
CPU threads # CPU threads AMDZ1

22 together we advance_

Why More OpenMP Host Threads Helps Zero-Copy?

e |Mplicit Zer e Jnified Shared Memo Eager Maps

2.0

15

1.0

Problem Size

e |Mplicit Zero- e Jnified Shared Memo Eager Maps

2.0

15

1.0

Problem Size
23

Problem Si

e |Mpicit opy = Unified Shared Me Eager Maps

2.0 —
15 —_—
1.0
1 2 4 8
Problem Size
e |Mplicit Zero- Unified Sharei Eager Maps
2.0
- /
1.0

Problem Size

AMDZU

together we advance_

24

Why More OpenMP Host Threads Helps Zero-Copy?

10penMP host thread

8 OpenMP Host Threads

ROCr call Copy Zero-Copy Copy/Z-C Copy 2ero-Copy Copy/Z-C
Hcalls Hcalls ratio Hcalls Hcalls ratio

5|gnalyva|t 351,653 99,627 3.53 1,360,088 738,483 1.84

scacquire

memory pool 23.277 19 ENE 20,848 90 231.64

allocate

memory async 307607 3 1.03x105 1124.258 3 3.75 x 10°

copy

signal async 194,848 0 N/A 491,492 0 N/A

handler

AMDZU

together we advance_

SPECaccel® 2023 Estimates™: Ratio Copy/Zero-Copy

m Implicit Zero-Copy m Unified Shared Memory m Eager Maps

3
/
6
w 5
zero-copy B 4
is faster B 3
E 2
________________ 3
zero-copy 0
is -
-2

403.stencil 404.Ibm 452.ep 457 .spC 470.bt

Benchmark

, , : AMDA
2 * According to SPEC rules of disclosure, our results are labeled as estimates because we ran the (/(++ subsets of the benchmarks. togethe,v'v'ead\,ance_

SPECaccel 2023 Estimates*: Zero-Copy Slow Downs

® Implicit Zero-Copy mUnified Shared Memory m Eager Maps

00

m Implicit Zero-Copy m Unified Shared Memory m Eager Maps
1.2

Estimated Ratios

N O DN B~ O

403.stencil 404.lbm 452.ep 457.spC 470.bt
Benchmark

___k

Estimated Ratios

0.8

403.stencil 404.1bm 452.ep

AMDZU

together we advance_

How to access CPU-allocated Memory on the GPU? XNACK

Memory

reg = ptr[0]

GPU Page Table

kernel<<...>>(ptr);

CPU

alr? Wave ‘aad ptr
Controller])

Compute Unit

ptr = malloc(1024*sizeof(double));

AMDZU

27 together we advance_

How to access CPU-allocated Memory on the GPU? XNACK

Memory

reg = ptr[0]

GPU Page Table

kernel<<...>>(ptr);

wait
Compute Unit
ptr = malloc(1024*sizeof(double));)
Address translation not acknowledged
AMDZ1

28 together we advance_

How to access CPU-allocated Memory on the GPU? XNACK

Memory

CPU Page Table GPU Page Table

log phy m

reg = ptr[0]

kernel<<...>>(ptr);

-

J

still

waiting..
N\

Compute Unit

ptr = malloc(1024*sizeof(double));

AMDZU

29 together we advance_

How to access CPU-allocated Memory on the GPU? XNACK

Memory

reg = ptr[0]

GPU Page Table

kernel<<...>>(ptr);

Compute Unit

ptr = malloc(1024*sizeof(double)); |
Address translation acknowledged

AMDZU

30 together we advance_

How to access CPU-allocated Memory on the GPU? Prefaulting

Memory

reg = ptr[0]

GPU Page Table

kernel<<...>>(ptr);

-

CPU

ptr = malloc(1024*sizeof(double));
gpu_page_table_prefault(ptr, 1024*sizeof(double));

Compute Unit

AMDZU

31 together we advance_

Unified Memory Overheads

XNACK

First time a page is touched on the GPU
XNACK-replay cost

Page-by-page faulting
Typically shows up in a few of the first kernel executions of your applications

Prefaulting the GPU page table

Done ahead of touching
Costs syscall + CPU page table walk + driver to copy page table entries to GPU page

table
Whole array is prefaulted - not page-by-page

AMDZU

together we advance_

Overhead of First-Touch on GPU: 403.stencil, 452.ep

Memory Copy: Sum of all ROCr calls to allocate and copy GPU-specific memory
First Touch: Cost of running XNACK-replay

Stencil EP

Overheads Memory Copy First Touch Memory Copy First Touch
Copy 0(10°) 0 0(10°) 0
Zero-Copy 0 0(108) 0 0(10°)
Eager Maps 0(10%) 0 0(10%) 0

Memory is initialized on the GPU

No H2D memory copy needed

First touch overhead only for zero-copy AMDZQU

33

together we advance_

Big Wins for Zero-Copy: 457.spC and 470.bt

m Implicit Zero-Copy m Unified Shared Memory.«~ m Eager Maps

8
/
5 6
.4‘-:,0 5
c 4
3 3
zero-copy e 2
is faster & 8
-1
______________________ _2
zero-copy Q Q R \3/ &
s @ b oV A7 <
o N > > >
Q
X
Benchmark

AMDZU

34 together we advance_

Big Wi ns fOI’ Zero_copv: 457.spc 3 nd 470 . bt Implicit Zero-Copy ~ m Unified Shared Memory = Eager Maps

8
g 6
Program stack for GPU arrays : 4 I
. . g2
Three functions using program stack g g - —
Copy: allocate+H2D/D2H copy at every function 22 _
' . 403.stencil 404.lbm 452.ep 457.spC 470.bt
Invocation Benchmark

Zero-Copy: pass stack pointer to target region

void foo() {
double A[NJ[M][K], B[M][N][K];

#pragma omp target teams loop ..

Zero-Copy does not pay for first touch overhead at
every function invocation

Same physical pages used across successive .
function calls A[i][310k] = B[JI[i1[k];

Even though different data is stored on program }

stack
void bar() {

This is more common than thought double D[KI[M][N];

#pragma omp target teams loop .. AMDZD

35 } together we advance_

36

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,

and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to
update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from
time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED
THIRD-PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS
DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILLAMD BE LIABLE TO YOU FOR ANY THIRD-PARTY
CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF
THIRD-PARTY CONTENT.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Instinct, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only
and may be trademarks of their respective owners.

SPEC ACCEL is a trademark of the Standard Performance Evaluation Corporation.

See www.spec.org for more information about SPEC® benchmarks.
AMDA

together we advance_

	Slide 1: Performance Analysis of Runtime Handling of Zero-Copy for OpenMP® Programs on MI300A* APUs
	Slide 2: Motivation for Accelerated Processing Units (APUs)
	Slide 3: Discrete GPU…
	Slide 4: Discrete GPU… and APU Architecture
	Slide 5: Discrete GPU… and APU Architecture
	Slide 6: Discrete GPU… and APU Architecture
	Slide 8: Programming an APU in 2024
	Slide 9: Programming an MI300A ‘APU’ with OpenMP
	Slide 10: Programming an MI300A ‘APU’ with OpenMP
	Slide 11: How to access CPU-allocated Memory on the GPU? XNACK
	Slide 12: How to access CPU-allocated Memory on the GPU? XNACK or Prefault
	Slide 13: Programming an MI300A ‘APU’ with OpenMP
	Slide 14: Experiments
	Slide 15: QMCPack Problem Size Scaling
	Slide 16: QMCPack Problem Size Scaling
	Slide 17: Why is Zero-Copy Winning?
	Slide 18: Why Increasing Problem Size Hurts Zero-Copy?
	Slide 19: Why Increasing Problem Size Hurts Zero-Copy?
	Slide 20: Why Eager Maps Suffers at 8 OpenMP Host Threads?
	Slide 21: Why Eager Maps Suffers at 8 OpenMP Host Threads?
	Slide 22: QMCPack OpenMP Host Thread Scaling
	Slide 23: Why More OpenMP Host Threads Helps Zero-Copy?
	Slide 24: Why More OpenMP Host Threads Helps Zero-Copy?
	Slide 25: SPECaccel® 2023 Estimates*: Ratio Copy/Zero-Copy
	Slide 26: SPECaccel 2023 Estimates*: Zero-Copy Slow Downs
	Slide 27: How to access CPU-allocated Memory on the GPU? XNACK
	Slide 28: How to access CPU-allocated Memory on the GPU? XNACK
	Slide 29: How to access CPU-allocated Memory on the GPU? XNACK
	Slide 30: How to access CPU-allocated Memory on the GPU? XNACK
	Slide 31: How to access CPU-allocated Memory on the GPU? Prefaulting
	Slide 32: Unified Memory Overheads
	Slide 33: Overhead of First-Touch on GPU: 403.stencil, 452.ep
	Slide 34: Big Wins for Zero-Copy: 457.spC and 470.bt
	Slide 35: Big Wins for Zero-Copy: 457.spC and 470.bt
	Slide 36: Disclaimer
	Slide 37

