BENCHMARKING THE EVOLUTION OF PERFORMANCE AND ENERGY EFFICIENCY ACROSS RECENT GENERATIONS OF INTEL XEON PROCESSORS

Istvan Z Reguly, Balázs Dravai – PPCU ITK, Hungary

reguly.istvan@itk.ppke.hu

PMBS 24

INTEL CPU GENERATIONS

- Sapphire Rapids 2023 Q1
 - Intel 7, first chiplet architecture 4 compute tiles
 - Up to 56 cores, 350W
 - 8xDDR5-4800 or HBM2E
- Emerald Rapids 2023 Q4
 - Intel 7, 2 compute tiles
 - Up to 64 cores, 350W
 - 8xDDR5-5600

- Sierra Forest 2024 Q2
 - Intel 3, 2 compute tiles
 - Up to 192 cores, 350W
 - 8x/12x DDR5-6400
- Granite Rapids 2024 Q3
 - Intel 3, 3 compute tiles
 - Up to 128 cores, 500W
 - 72 core 6960P tested
 - 12xDDR5-8800 MRDIMM

AMD PROCESSOR GENERATION

- AMD Milan 2021 Q1
 - 7 nm, 8 chiplet
 - 64 cores, 280W
 - 8x DDR4-3200
- AMD Genoa 2022 Q4
 - 5 nm, 12 chiplet
 - 96 cores, 360W
 - 12x DDR5-4800

- AMD Turin 2024 Q3
 - 3 nm, up to 16 chiplet
 - 128/192 cores, 500W
 - 12x DDR5-6400

PERFORMANCE, EFFICIENCY

- Number of bandwidth-bound codes (mostly explicit PDE solvers)
 - CloverLeaf (low-order), Seismic (high-order), OpenSBLI (large-scale DNS), MG-CFD (FV Euler on unstructured mesh), Volna (FV NLSW on unstructured mesh)
- Compute-intensive: miniBUDE (docking proxy)
- MPI or MPI+OpenMP many through OPS/OP2 DSLs. icpx/g++ compilers.

• Compare:

- Runtime
- Architectural efficiency (effective BW estimates)
- Energy efficiency

BASELINES

	SPR	SPR	EMD	GND	SRF	SRF	Milan	Ganoo	
	HBM	DDR		UNIX	96c	192c	IVIIIaII	Uchioa	
Model	9480	8480+	8592+	6960P	6740E		7763	9B14	
Cores	112	112	128	144	192	384	128	180	
LLC (MB)	105	105	320	432	96	192	256	384	
Cache BW	3481	4340	8149	7346	4139	7627	2454	9534	
DDR BW	1475	388	542	1150	396	667	234	529	
Speedup	3.8	1.0	1.39	2.96	1.04	1.23	0.6	1.36	

Point of reference

11/18/24

5

RUNTIME VS SAPPHIRE RAPIDS+DDR5

11/18/24

6 🍏

ARCHITECTURAL EFFICIENCY

- 1.8

- 1.6

- 1.4

- 1.0

0.8

0.6

0.4

CloverLeaf 2D -	0.68	0.77	0.78	0.96	0.95	0.80	0.96	1.00	
CloverLeaf 3D -	0.52	0.70	0.71	0.87	0.87	0.66	0.88	0.92	
RTM -	0.21	0.41	0.47	0.43	0.47	0.33	0.51	0.39	
Acoustic -	0.34	0.57	0.56	0.49	0.54	0.52	0.77	0.76	
OpenSBLI SN -	0.35	0.53	0.53	0.54	0.56	0.47	0.69	0.71	
OpenSBLI SA -	0.50	0.67	0.65	0.71	0.76	0.60	0.78	0.73	
MG-CFD -	0.50	1.36	1.44	1.16	1.30	1.13	1.84	1.30	
Volna -	0.54	0.91	0.93	0.96	0.99	0.96	1.11	1.08	
Average -	0.45	0.74	0.76	0.77	0.80	0.68	0.94	0.86	
miniBUDE -	0.33	0.27	0.39	0.32	0.30	0.32	0.36	0.37	
	SPR HBM -	SPR DDR -	EMR -	SRF 96c -	SRF 192c -	GNR -	Milan -	Genoa -	-

• Effective BW: array size in each loop

- Above 1.0 if cache re-use across loops
- Significant MPI overheads on Seismic apps (30-50%)
 - Especially SPR+HBM and Genoa

- miniBUDE: fraction of peak GFLOPS/s at all-core turbo
 - Not always documented

BALANCED IMPROVEMENT VS SPR+DDR?

- How much did overall performance improve vs. the improvement in bandwidth?
 - (runtime/runtime_{SPR})/(Peak BW/Peak BW_{SPR})*100
- SPR+HBM: same compute only 64%
- EMR: +8 cores, 3x cache size, 1.4x BW 98%
- GNR: +16 cores, 4.1x cache size, 3x BW 91%
- SRF 96 core: +40 cores, 0.85x cache size, 1.04x BW 105%
- SRF 192 core: +136 cores, 1.71x cache size, 1.7x BW 110%

ENERGY EFFICIENCY VS SAPPHIRE RAPIDS

11/18/24

9

POWER

- 250W TDP for SRF 96c
- 280W TDP for Milan
- 350W TDP for SPR, EMR, SRF 192c
- 360W TDP for Genoa (no RAPL)
- 500W TDP for GNR
- Plus RAM

CloverLeaf 2D -	722W	705W	690W	424W	678W	1007W	461W
	(3.37x)	(1x)	(1.41x)	(1.29x)	(2.11x)	(3.08x)	(0.75x)
CloverLeaf 3D -	703W	702W	697W	438W	722W	1011W	503W
	(2.83x)	(1x)	(1.41x)	(1.3x)	(2.13x)	(2.81x)	(0.76x)
RTM -	701W	739W	627W	385W	640W	966W	513W
	(1.98x)	(1x)	(1.59x)	(1.08x)	(1.93x)	(2.34x)	(0.74x)
Acoustic -	732W	718W	722W	492W	732W	1046W	532W
	(2.23x)	(1x)	(1.35x)	(0.89x)	(1.6x)	(2.67x)	(0.81x)
OpenSBLI SN -	729W	711W	707W	452W	723W	1021W	484W
	(2.52x)	(1x)	(1.38x)	(1.05x)	(1.79x)	(2.61x)	(1.3x)
OpenSBLI SA -	712W	704W	686W	393W	652W	1014W	433W
	(2.84x)	(1x)	(1.34x)	(1.1x)	(1.92x)	(2.62x)	(0.78x)
MG-CFD -	671W	702W	710W	487W	823W	1078W	569W
	(1.41x)	(1x)	(1.48x)	(0.89x)	(1.64x)	(2.48x)	(0.69x)
Volna -	699W	700W	699W	490W	744W	1054W	516W
	(2.23x)	(1x)	(1.42x)	(1.09x)	(1.86x)	(3.12x)	(0.68x)
SPR HBM SPR DDR EMR SRF 96c SRF 192c GNR							Milan

CONCLUSIONS

- Rapid evolution with interesting trade-offs
- Intel's differentiated product lines evolution vs. SPR
 - SRF 96 core: Slightly higher performance (1.09×) but at a 1.4× lower power
 - SRF 192 core: Significantly higher performance(1.87×), at the same power
 - GNR: Even higher performance (2.72×), but at 1.44× more power
- MRDIMM may be a critical differentiating factor vs. AMD
 - Big advantage for memory-bound codes
- Still behind with energy efficiency process issues

11/18/24

11