System-Wide Roofline Profiling - A Case Study on NERSC's Perlmutter **Supercomputer**

Brian Austin, Dhruva Kulkarni, Brandon Cook, Samuel Williams, Nicholas Wright Lawrence Berkeley National Laboratory

PMBS24, held in conjunction with SC24 Atland GA November 18, 2024

How do we describe HPC workloads to help system architects make better design choices?

Top 60 Codes at NERSC; Jan 18 - May 15, 2023

It is not a simple task

- HPC workloads can be extremely diverse. For example, NERSC hosts:
	- 850 projects
	- o 800 distinct codes
	- 11,000 users \rightarrow 11,000 uses
- Each use-case may have different performance sensitivities.

How do we describe HPC workloads to help system architects make better design choices?

NERSC utilization. Jan 18- May 19, 2023

Top 50 codes, grouped by algorithm similarity

Current best practice

- Carefully selection of "representative" jobs.
	- o Two benchmarks can represent 60% of the workload !?
	- No information about the remaining workload
- Deep analysis of selected jobs
	- o Analysis is resource intensive
	- \circ Not easily scaled to other jobs.

How do we describe HPC workloads to help system architects make better design choices?

Top 60 Codes at NERSC; Jan 18 - May 15, 2023

This work: System-wide sampling

- Limited performance counter selection
- Full coverage of entire workload
- Eliminates selection bias and extrapolation error
- Low sampling rates
- No insight into individual codes
- Limited to simple performance models

● System and Monitoring Infrastructure

What is the prevailing floating-point precision used at NERSC?

● Roofline Performance Model

Is the performance of NERSC's workload typically bound by FLOPs or bandwidth?

● NERSC-10 Benchmarks

How well does this benchmark suite reflect the FLOP/Byte ratio of the workload?

Perlmutter - an HPE Cray EX System

- 1,536 GPU accelerated nodes
	- 1x AMD Milan CPU
	- 4x NVIDIA A100 GPUs with 40 GB HBM
- 3,072 CPU nodes
	- o 2x AMD Milan CPUs
- Slingshot 11 interconnect
- 35 PB all Flash Lustre file system
- Later added 346 GPU nodes with 80 GB HBM

Data Acquisition

Collection Pipeline

- On-node metrics sampled using NVIDIA DCGM (Data Center GPU Manager)
- Cross-system aggregation using LDMS (Lightweight Distributed Metrics System)
- Stored in NERSC's OMNI (Operations Monitoring and Notification Infrastructure)

Volume

- All 1,536 40GB A100 GPU nodes
- Sampled at 1-second intervals
- Entire month of July, 2024
- \approx 16 Billion samples, each corresponds to one GPU-second

GPU Metrics Collected

Each metric value represents an average over a time interval (i.e. our 1 second sampling period) and is not an instantaneous value.

What is the prevailing floating-point precision used at NERSC?

Distribution of FLOP types on Perlmutter GPUs

- Double precision (FP64) FLOPS are twice as common as single precision (FP32) FLOPS.
- Half of the FP64 FLOPS run on tensor cores.
	- o All tensor activity attributed to FP64
	- o Tensor cores support TF32, but not FP32
	- o No corresponding non-tensor FP16
- Half precision (FP16) is rarely used

● System and Monitoring Infrastructure

What is the prevailing floating-point precision used at NERSC?

● Roofline Performance Model

Is the performance of NERSC's workload typically bound by FLOPs or bandwidth?

● NERSC-10 Benchmarks

How well does this benchmark suite reflect the FLOP/Byte ratio of the workload?

Roofline Performance Model

Hypothesis

- Kernel performance is limited by either:
	- a) the rate of executing operations, e.g. FLOP/s ("compute-bound"), or b) the rate of transferring operands to the cores ("memory-bound")

Processor Characteristics

- Peak floating point performance
- Peak memory bandwidth
- $\bullet \quad \rightarrow$ Attainable Performance Ceiling

Kernel Characteristics

• Arithmetic Intensity = Number of FLOPs executed Number of bytes transferred to/from memory

Kernel Performance

Arithmetic Intensity × Peak Bandwidth,

• Performance = min{

Peak FLOP/s

Arithmetic intensity distributions are easily computed from DCGM metrics

Arithmetic Intensity (FLOPs/Bytes)

Performance Roofline (TF/s)

Full-system Arithmetic Intensity Distributions

- $FP32:$
	- Almost always memory-bound Median = 0.06 FLOPs/ byte
- FP64:
	- Long tail of high intensity Median = 3.2 FLOPs/byte
- FP64 Tensor:
	- \circ Median = 0.2 (why?!)
- All precisions:
	- The majority of samples have AI values substantially below the machine balance.

Is the performance of NERSC's workload typically bound by FLOPs or bandwidth?

- Introducing a "pseudo64" FLOP type
	- Needed to compute a compute a single arithmetic intensity from multiple FLOP types
	- \circ FLOPS_{Pseudo64} = 1 \times FLOPS_{FP64} + $\frac{1}{2} \times FLOPS$ _{FP32} + $\frac{1}{4}$ X FLOPS_{FP16} $+$ 1 \times
- FLOPS
■ Median pseudo64 Arithmetic Intensity: 7.5 FLOPS/Byte
- On Perlmutter's A100 GPUs, 46% of cycles memory-bound 54% are compute-bound.

Arithmetic Intensity (FP-ops / byte)

● System and Monitoring Infrastructure

What is the prevailing floating-point precision used at NERSC?

● Roofline Performance Model

Is the performance of NERSC's workload typically bound by FLOPs or bandwidth?

● NERSC-10 Benchmarks

How well does this benchmark suite reflect the FLOP/Byte ratio of the workload?

NERSC-10 Benchmark Suite

- Cross section of NERSC's workload
	- Spans many axes of computational diversity
	- Six GPU codes + two CPU codes
- Profiled configuration
	- "Small" problem size
	- Ran using 4 GPUs on 1 node

Office of

Diversity of NERSC-10 benchmarks is reflected by their Arithmetic Intensity Distributions

Bringing Science Solutions to the World

How well does the NERSC-10 benchmark suite reflect the FLOP/Byte ratio of the workload?

- Same range of arithmetic intensities
- Same 50/50 balance of memory- and compute bound samples
- Effects of using a finite suite are clearly visible

Conclusion

- First of a kind analysis using full-system sampling to understand the performance characteristics of an entire supercomputer workload, revealing:
	- Distribution of FLOP types: ⅔ FP64, ⅓ FP32, <0.1% FP16
	- Distribution of arithmetic intensities: Median = 7.5 pseudo-64 FLOPs/byte
	- On A100 GPUs, ½ of cycles are memory- bound, $\frac{1}{2}$ are compute bound.
- The NERSC-10 benchmarks replicate the Perlmutter's overall balance of memory- and compute-bound samples, but the effects of using a finite suite are clearly visible in the shapes of the arithmetic intensity distribution.
- Full-system sampling and traditional performance modeling are complementary approaches to understanding architectural trade-offs.
- 19 Many refinements, extensions & experiments will follow ! • Results show today are preliminary.

https://tinyurl.com/29j93uk3

Office of Science

Thank You

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a Department of Energy Office of Science User Facility using NERSC award ASCR-ERCAP0026875. ROR: https://ror.org/05v3mvq14

