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How do we describe HPC workloads to help 
system architects make better design choices?

It is not a simple task
• HPC workloads can be 

extremely diverse. For 
example, NERSC hosts:
o 850 projects
o 800 distinct codes
o 11,000 users → 11,000 uses

• Each use-case may have 
different performance 
sensitivities.
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How do we describe HPC workloads to help 
system architects make better design choices?

Current best practice
• Carefully selection of 

“representative” jobs.
o Two benchmarks can represent 

60% of the workload !?
o No information about the 

remaining workload

• Deep analysis of selected jobs
o Analysis is resource intensive
o Not easily scaled to other jobs.
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How do we describe HPC workloads to help 
system architects make better design choices?

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕ ✕

✕

✕

✕

✕

✕

✕

✕

✕ ✕

✕
✕

✕

✕

This work: System-wide sampling
• Limited performance counter 

selection
• Full coverage of entire workload
• Eliminates selection bias and 

extrapolation error
• Low sampling rates
• No insight into individual codes
• Limited to simple performance 

models
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Outline
● System and Monitoring Infrastructure

        What is the prevailing floating-point precision used at NERSC?

● Roofline Performance Model

        Is the performance of NERSC’s workload typically bound by FLOPs or bandwidth?

● NERSC-10 Benchmarks

        How well does this benchmark suite reflect the FLOP/Byte ratio of the workload?
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Perlmutter - an HPE Cray EX System 

● 1,536 GPU accelerated nodes

○  1x AMD Milan CPU 

○ 4x NVIDIA A100 GPUs with 40 GB HBM

● 3,072 CPU nodes

○  2x AMD Milan CPUs 

● Slingshot 11 interconnect

● 35 PB all Flash Lustre file system

● Later added 346 GPU nodes with 80 GB HBM
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Data Acquisition
Collection Pipeline

• On-node metrics sampled using 
NVIDIA DCGM (Data Center GPU Manager)

• Cross-system aggregation using LDMS
(Lightweight Distributed Metrics System)

• Stored in NERSC’s OMNI 
(Operations Monitoring and Notification Infrastructure)

Volume
• All 1,536 40GB A100 GPU nodes

• Sampled at 1-second intervals

• Entire month of July, 2024
• ≈ 16 Billion samples,

each corresponds to one GPU-second
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GPU Metrics Collected

Feature A100 Peak 
Performance DCGM Metric Description

FP16 78 TF/s fp16_active
The fraction of cycles the 
FP64/32/16/Tensor pipes were active.

FLOPSFP64 = fp64_active ✕ PeakFP64

FP32 19.5 TF/s fp32_active

FP64 9.7 TF/s fp64_active

FP64 Tensor 19.5 TF/s tensor_active

HBM 1.555 TB/s dram_active

The fraction of cycles where data was sent 
to or received from device memory.

BytesHBM = dram_active ✕ PeakHBM

Each metric value represents an average over a time interval (i.e. our 1 second sampling period)
and is not an instantaneous value.
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What is the prevailing floating-point precision
used at NERSC?

• Double precision (FP64) FLOPS are twice as 
common as single precision (FP32) FLOPS.

• Half of the FP64 FLOPS run on tensor cores.
o All tensor activity attributed to FP64 

o Tensor cores support TF32, but not FP32

o No corresponding non-tensor FP16

• Half precision (FP16) is rarely used
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Outline
● System and Monitoring Infrastructure

        What is the prevailing floating-point precision used at NERSC?

● Roofline Performance Model

        Is the performance of NERSC’s workload typically bound by FLOPs or bandwidth?

● NERSC-10 Benchmarks

        How well does this benchmark suite reflect the FLOP/Byte ratio of the workload?
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Hypothesis
• Kernel performance is limited by either:

a) the rate of executing operations, e.g. FLOP/s (“compute-bound”), or
b) the rate of transferring operands to the cores (“memory-bound”)

Processor Characteristics
• Peak floating point performance 
• Peak memory bandwidth
• → Attainable Performance Ceiling

Kernel Characteristics
•

Kernel Performance
•

Roofline Performance Model

Arithmetic Intensity = Number of FLOPs executed
Number of bytes transferred to/from memory

Performance = min{ 
Arithmetic Intensity × Peak Bandwidth,

Peak FLOP/s

×
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AIFP64 
= 

fp64_active ✕ PeakFP64

dram_active ✕ PeakHBM2

Arithmetic intensity distributions are easily 
computed from DCGM metrics
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Full-system Arithmetic Intensity Distributions
● FP32:

○ Almost always memory-bound
Median = 0.06 FLOPs/ byte

● FP64:
○ Long tail of high intensity

Median = 3.2 FLOPs/byte

● FP64 Tensor:
○ Median = 0.2 (why?!)

● All precisions:
○ The majority of samples have AI 

values substantially below the 
machine balance.
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Is the performance of NERSC’s workload typically 
bound by FLOPs or bandwidth?

● Introducing a “pseudo64” FLOP type

○ Needed to compute a compute a 
single arithmetic intensity from 
multiple FLOP types

○

● Median pseudo64 Arithmetic Intensity:
7.5 FLOPS/Byte

● On Perlmutter’s A100 GPUs, 
46% of cycles  memory-bound
54% are compute-bound.

FLOPSPseudo64 = 1 ✕ FLOPSFP64  
+ ½ ✕ FLOPSFP32 
+ ¼  ✕ FLOPSFP16
+ 1 ✕ 

FLOPSTensor64
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Outline
● System and Monitoring Infrastructure

        What is the prevailing floating-point precision used at NERSC?

● Roofline Performance Model

        Is the performance of NERSC’s workload typically bound by FLOPs or bandwidth?

● NERSC-10 Benchmarks

        How well does this benchmark suite reflect the FLOP/Byte ratio of the workload?
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NERSC-10 Benchmark Suite
PRODUCTION 
WORKFLOW

Algorithm / 
Domain 

Workflow 
Benchmark 
Tasks

Language GPU 
enabled? I/O

Lattice QCD Lattice QCD MILC configuration
MILC analysis

C
OpenMP
QUDA / QPhiX (optional)
MPI

Yes MPIIO

Optical
Materials

Density
Functional 
Theory

BerkeleyGW epsilon 
BerkeleyGW sigma

FORTRAN
OpenMP-offload 
   or OpenACC
MPI

Yes HDF5

Materials by 
Design

Molecular 
Dynamics LAMMPS

C++
Kokkos
MPI

Yes minimal

Climate 
Simulation & 
Analysis

Deep 
Learning 
Training

DeepCAM training PyTorch Yes HDF5

CMB-S4 Cosmology TOAST
Python front-end
C++ back-end
MPI4py

No Posix FPP; 
FITS format

Metagenome 
Annotation Genomics HMMSearch C

OpenMP No Posix FPP

● Cross section of 
NERSC’s workload

○ Spans many axes of 
computational diversity

○ Six GPU codes
+ two CPU codes

● Profiled configuration

○ “Small” problem size

○ Ran using 4 GPUs 
on 1 node
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Diversity of NERSC-10 benchmarks is reflected by their 
Arithmetic Intensity Distributions
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How well does the NERSC-10 benchmark suite 
reflect the FLOP/Byte ratio of the workload?

• Same range of arithmetic 
intensities

• Same 50/50 balance of 
memory- and compute 
bound samples

• Effects of using a finite 
suite are clearly visible
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Conclusion
● First of a kind analysis using full-system sampling to understand the 

performance characteristics of an entire supercomputer workload, 
revealing: 

○ Distribution of FLOP types:  ⅔ FP64, ⅓ FP32, <0.1% FP16 

○ Distribution of arithmetic intensities: 
Median = 7.5 pseudo-64 FLOPs/byte

○ On A100 GPUs, ½ of cycles are memory- bound, 
½  are compute bound.

● The NERSC-10 benchmarks replicate the Perlmutter’s overall balance 
of memory- and compute-bound samples, but the effects of using a 
finite suite are clearly visible in the shapes of the arithmetic intensity  
distribution.

● Full-system sampling and traditional performance modeling are 
complementary approaches to understanding architectural trade-offs.

● Results show today are preliminary. 
Many refinements, extensions & experiments will follow !

System-Wide Roofline Profiling -
A Case Study on NERSC’s 
Perlmutter Supercomputer

https://tinyurl.com/29j93uk3
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