

Performance Modeling and System Design Insights for AI Foundation Models

Shashank Subramanian NERSC, Berkeley Lab

AI Foundation Models are **Expensive**

• Transformers are the workhorse: Scaling properties, flexible, SOTA results

Large-scale AI Models are Growing in Science

- Range of scientific simulation tasks is enormous
 - weather/climate, fusion, seismic, fluids, proteins, material sciences, high-energy physics, ...
- Surge of transformer models as possible *foundations* for downstream tasks
 - forecasting, superresolution, inversion, reconstruction, UQ, ...

• Transformers in science may operate in different computational regimes

• A Large Language Model (LLM) example: GPT3

Token Visualizer

- A Large Language Model (LLM) example: GPT3
 - #Parameters can be huge ~ billions to trillions of parameters
 - Process a sequence of O(1K) tokens (usually 2K, 4K tokens in pre-training)
 - MLP FLOPs are large (compared to S/A)
 - GPT3-1T on 3072 A100 GPUs takes 84 days to train on 450B tokens
 - Understood reasonably well

<u>Token Visualizer,</u> <u>Megatron-LM</u>

• A Scientific Surrogate example: Transformer for global weather forecasting

- A Scientific Surrogate example: Transformer for global weather forecasting
 - **#Parameters are moderate ~ million to billion parameters**
 - Process a sequence of O(1M) tokens (usually downsampled to O(10K) tokens)
 - S/A FLOPs are large (compared to MLP)
 - A small model could be more expensive than a trillion parameter LLM!
 - [?] Days on [?] GPUs on [?] tokens. Less understood

Scientific Foundation Models

Performance Modeling can be Valuable

- Understand Costs/Bottlenecks and analyze Sensitivity of Performance
 - What bottlenecks w.r.t parallelization strategies?
 - Different Transformer regimes (LLMs vs Science)?
 - Different system hardware (specifically network/NVLINK effects)?
 - Different system scales (10s vs 1000s of accelerators)?

Performance Modeling can be Valuable

• Understand Costs/Bottlenecks and analyze Sensitivity of Performance

- What bottlenecks w.r.t parallelization strategies?
- Different Transformer regimes (LLMs vs Science)?
- Different system hardware (specifically network/NVLINK effects)?
- Different system scales (10s vs 1000s of accelerators)?

• Value-add for:

- Users (researchers, engineers)
 - Optimal ways to parallelize AI models? Architecture search with performance in mind?
- Systems design
 - Which aspects of the HPC system are crucial? Alternate design choices?

Calculon. A Methodology and Tool for High-Level Co-Design of Systems and Large Language Models. SC23

- Counting FLOPs, communication volume is dependent on the parallelism
- Long sequence lengths may necessitate 4D parallelism

Operation	Partitioned Tensor Shapes	Туре	Vol			
2D TP over $n_1 \times n_2$ grid of GPUs						
SA						
$\tilde{\mathbf{X}} = LN(\mathbf{X})$	$ ilde{\mathbf{X}}:(b,rac{l}{n_2},e),\mathbf{X}:(b,rac{l}{n_1n_2},e),$	\mathcal{AG}	$b \frac{l}{n_2} e$			
$\mathbf{Q} = ilde{\mathbf{X}} \mathbf{W}_{\mathbf{Q}}$	$\mathbf{Q}:(b,rac{h}{n_1},rac{l}{n_2},e_h),\mathbf{W}_{\mathbf{Q}}:(e,rac{e}{n_1}),$	-	0			
$\mathbf{A} = \mathbf{Q}\mathbf{K}^T$	$\mathbf{A}:(b,rac{h}{n_1},rac{l}{n_2},l),\mathbf{K}:(b,rac{h}{n_1},l,e_h)$	\mathcal{AG}	$bl\frac{e}{n_1}$			
$\mathbf{S}=\mathbf{A}\mathbf{V}$	$\mathbf{S}:(b,rac{h}{n_1},rac{l}{n_2},e_h),\mathbf{V}:(b,rac{h}{n_1},l,e_h)$	\mathcal{AG}	$bl\frac{e}{n_1}$			
$\mathbf{Y} = \mathbf{SW}_{\mathbf{p}}$	$\mathbf{Y}:(b,rac{l}{n_1n_2},e),\mathbf{W_p}:(rac{e}{n_1},e)$	\mathcal{RS}	$b\frac{l}{n_2}e$			
MLP						
$\tilde{\mathbf{Y}} = LN(\mathbf{Y})$	$ ilde{\mathbf{Y}}:(b,rac{l}{n_2},e),\mathbf{Y}:(b,rac{l}{n_1n_2},e),$	\mathcal{AG}	$b\frac{l}{n_2}e$			
$\mathbf{Z} = ilde{\mathbf{Y}} \mathbf{W}_{1}$	$\mathbf{Z}:(b,rac{l}{n_2},rac{f}{n_1}),\mathbf{W_1}:(e,rac{f}{n_1})$	-	0			
$\mathbf{X} = \mathbf{Z}\mathbf{W_2}$	$\mathbf{X}:(b,rac{l}{n_1n_2},e),\mathbf{W_2}:(rac{f}{n_1},e)$	\mathcal{RS}	$brac{l}{n_2}e$			

- Counting FLOPs, communication volume is dependent on the parallelism
- Long sequence lengths may necessitate 4D parallelism

Operation	Partitioned Tensor Shapes	Туре	Vol			
2D TP over $n_1 \times n_2$ grid of GPUs						
SA						
$\tilde{\mathbf{X}} = LN(\mathbf{X})$	$ ilde{\mathbf{X}}:(b,rac{l}{n_2},e),\mathbf{X}:(b,rac{l}{n_1n_2},e),$	\mathcal{AG}	$b \frac{l}{n_2} e$			
$\mathbf{Q} = ilde{\mathbf{X}} \mathbf{W}_{\mathbf{Q}}$	$\mathbf{Q}:(b,rac{h}{n_1},rac{l}{n_2},e_h),\mathbf{W}_{\mathbf{Q}}:(e,rac{e}{n_1}),$	-	0			
$\mathbf{A} = \mathbf{Q}\mathbf{K}^T$	$\mathbf{A}:(b,rac{h}{n_1},rac{l}{n_2},l),\mathbf{K}:(b,rac{h}{n_1},l,e_h)$	\mathcal{AG}	$bl\frac{e}{n_1}$			
$\mathbf{S}=\mathbf{A}\mathbf{V}$	$\mathbf{S}:(b,rac{h}{n_1},rac{l}{n_2},e_h),\mathbf{V}:(b,rac{h}{n_1},l,e_h)$	AG	$bl\frac{e}{n_1}$			
$\mathbf{Y} = \mathbf{SW}_{\mathbf{p}}$	$\mathbf{Y}:(b,rac{l}{n_1n_2},e),\mathbf{W_p}:(rac{e}{n_1},e)$	\mathcal{RS}	$b\frac{l}{n_2}e$			
MLP						
$\tilde{\mathbf{Y}} = LN(\mathbf{Y})$	$ ilde{\mathbf{Y}}:(b,rac{l}{n_2},e),\mathbf{Y}:(b,rac{l}{n_1n_2},e),$	\mathcal{AG}	$b\frac{l}{n_2}e$			
$\mathbf{Z} = ilde{\mathbf{Y}} \mathbf{W}_{1}$	$\mathbf{Z}:(b,rac{l}{n_2},rac{f}{n_1}),\mathbf{W_1}:(e,rac{f}{n_1})$	-	0			
$\mathbf{X} = \mathbf{Z}\mathbf{W_2}$	$\mathbf{X}:(b,rac{l}{n_1n_2},e),\mathbf{W_2}:(rac{f}{n_1},e)$	\mathcal{RS}	$b rac{l}{n_2} e$			

- Counting FLOPs, communication volume is dependent on the parallelism
- Long sequence lengths may necessitate 4D parallelism

Operation	Partitioned Tensor Shapes	Туре	Vol			
2D TP over $n_1 \times n_2$ grid of GPUs						
SA						
$\tilde{\mathbf{X}} = LN(\mathbf{X})$	$ ilde{\mathbf{X}}:(b,rac{l}{n_2},e),\mathbf{X}:(b,rac{l}{n_1n_2},e),$	AG ($b\frac{l}{n_2}e$			
$\mathbf{Q} = ilde{\mathbf{X}} \mathbf{W}_{\mathbf{Q}}$	$\mathbf{Q}:(b,rac{h}{n_1},rac{l}{n_2},e_h),\mathbf{W}_{\mathbf{Q}}:(e,rac{e}{n_1}),$	-	0			
$\mathbf{A} = \mathbf{Q}\mathbf{K}^T$	$\mathbf{A}:(b,rac{h}{n_1},rac{l}{n_2},l),\mathbf{K}:(b,rac{h}{n_1},l,e_h)$	\mathcal{AG}	$bl\frac{e}{n_1}$			
$\mathbf{S}=\mathbf{A}\mathbf{V}$	$\mathbf{S}:(b,rac{h}{n_1},rac{l}{n_2},e_h),\mathbf{V}:(b,rac{h}{n_1},l,e_h)$	\mathcal{AG}	$bl\frac{e}{n_1}$			
$\mathbf{Y} = \mathbf{SW}_{\mathbf{p}}$	$\mathbf{Y}:(b,rac{l}{n_1n_2},e),\mathbf{W_p}:(rac{e}{n_1},e)$	\mathcal{RS}	$b\frac{l}{n_2}e$			
MLP						
$\tilde{\mathbf{Y}} = LN(\mathbf{Y})$	$ ilde{\mathbf{Y}}:(b,rac{l}{n_2},e),\mathbf{Y}:(b,rac{l}{n_1n_2},e),$	\mathcal{AG}	$b\frac{l}{n_2}e$			
$\mathbf{Z} = ilde{\mathbf{Y}} \mathbf{W}_{1}$	$\mathbf{Z}:(b,rac{\overline{l}}{n_2},rac{f}{n_1}),\mathbf{W_1}:(e,rac{f}{n_1})$	-	0			
$\mathbf{X} = \mathbf{Z}\mathbf{W_2}$	$\mathbf{X}:(b,rac{l}{n_1n_2},e),\mathbf{W_2}:(rac{f}{n_1},e)$	\mathcal{RS}	$brac{l}{n_2}e$			

- Counting FLOPs, communication volume is dependent on the parallelism
- Long sequence lengths may necessitate 4D parallelism

- Long sequence lengths may necessitate 4D parallelism
- Different choices for Matrix Multiplies: SUMMA also possible

Two Transformer Variants on Different Systems

- Large GPT3 (1T, 2K) on ~trillion tokens
- Large ViT (80B, 64K) on 40 years of weather data

Two Transformer Variants on Different Systems

- Large GPT3 (1T, 2K) on ~trillion tokens
- Large ViT (80B, 64K) on 40 years of weather data

- Three NVIDIA GPU generations: A100, H200, B200
- Three NVLINK/NVSWITCH domain sizes: 4, 8, 64

Provides a High-level View of Scaling Behavior

Provides a High-level View of Scaling Behavior

GPT3-1T - Performance Projections 10³ Training Time (Days) 101 A100 Systems A100-NVS4 A100-NVS8 VH200 A100-NVS64 X H200-NVS4 H200-NVS8 H200-NVS64 B200-NVS4 Perfect B200-NVS8 B200-NVS64 Scaling 128 256 512 1024 2048 4096 8192 16384 n

Provides a High-level View of Scaling Behavior

B200, NVS8

Larger NVLINK Favor High Data Parallelism

Probe the Model to Get Deeper Insights

Placement of GPUs Matters

Placement of GPUs Matters

Placement of GPUs Matters for Large NVLINK

BERKELEY LAB

Transformer in Science is More Sensitive to the Network

Transformer in Science is More Sensitive to the Network

Long Contexts Need 4D Parallelism

Long Contexts Need 4D Parallelism

Long Contexts Need 4D Parallelism

Larger NVLINK Drops Communication Costs

SUMMA Presents More Uniform Strategies

Larger NVLINK Drops Communication Costs

4D Parallelism Increases Throughput Compared to 3D

Validation with Megatron-LM

- Validated time models on the Perlmutter supercomputer
 - 4-way NVLINK domain

Validation with Megatron-LM

- Validated time models on the Perlmutter supercomputer
 - 4-way NVLINK domain
- Validated throughput numbers on 512 GPUs
 - GPT3 (175B) and ViT (32K)
- ~10% errors in iteration time
 - Controlled GPU placement with Megatron flags
 - Overlap flags, *FlashAttention*, other optimizations in sync with model
 - Validated sub-optimal configurations as well
- SUMMA validation challenging
 - ColossalAl in future work

Some Key Takeaways

- Placement of GPUs on high-bandwidth domain affects the optimal parallelism
 - Software codebases to be flexible to this
- LLMs benefit from large NVLINKs at pre-training scales
 - Fine-tuning scales can leverage other parallelization strategies to be less sensitive
 - HBM capacity is underutilized for the largest scales
- Science Transformers benefit uniformly from NVLINK due to memory pressure
 - Demand 4D parallelism (data + pipeline + 2D tensor + optimizer sharding)
 - Capacity is more critical (High capacity, low bandwidth alternatives?)
- 4D parallelism is useful for moderate speedups

Thank You!

