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Large Language Models (LLMs)
• LLM is a deep learning algorithm that's equipped to summarize, translate, predict, and generate human-

sounding text to convey ideas and concepts.

• They leverage vast amounts of data and sophisticated algorithms to perform a wide range of tasks

• They rely on a massive number of parameters, which allows them to capture intricate language 
patterns and context.

• Examples of popular LLMs include OpenAI’s GPT, Google’s BERT, and Meta’s LLaMA.

https://www.nextbigfuture.com/2023/04/timeline-of-open-and-proprietary-large-language-models.html

https://dataforest.ai/blog/large-language-models-advanced-communication
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Challenge for LLM Inference and deployment: Colossal Sizes

• Despite being powerful, LLMs are hard to serve
• LLM sizes and computation are increasing exponentially

• We need model compression techniques and system support to bridge the gap

Lin et al. AWQ: Activation-aware Weight Quantization 

for LLM Compression and Acceleration
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Need for LLM Inference Optimizations

• LLMs, with billions of parameters, can 

be slow during inference due to the 

computational load required to 

process large amounts of data.

• Many applications require real time 

responses from LLMs, which can 

be challenging.

• The high computational demands of 

LLMs translate into significant 

operational costs. 

• LLM Inference optimization 

methods reduces energy consumption 

and hardware requirements, making 

deployments more cost-effective

https://www.interconnects.ai/p/llama-3-and-scaling-open-llms
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LLM-Inference-Bench: Bridging LLMs, Accelerators and Frameworks

Open source LLMs 

LLaMA, Mistral, Qwen

AI Accelerators

Nvidia, AMD GPUs, 

SambaNova SN40L, 

Habana Gaudi

TensorRT-LLM

LLM-Inference-Bench
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AI Accelerators for LLMs

Nvidia GPUs AMD GPUs

A100 H100 GH200 MI250 MI300X
Habana 

Gaudi2

SambaNova 

SN40L

• AI Accelerators for LLMs are key to handle billions and trillions of LLM parameters

• We consider the following Accelerators in our benchmarking study:
• Nvidia GPUs: A100, H100 and GH200

• AMD GPUs: MI300X and MI250
• AI accelerators: SambaNova SN40L and Habana Gaudi2

AI Accelerators
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Inference Frameworks

TensorRT-LLM

There has been a rise in Inference frameworks for LLM over the last few years

vLLM TensorRT-LLM Deepspeed-MII LLaMA.cpp

Can run on diverse 

hardware platforms 

including Intel, Nvidia, 

AMD GPUs and AI 

accelerators such as 

Graphcore and Habana

Limited to Nvidia 

GPUs, such as A100, 

H100, GH200 series

Limited to Nvidia GPUs (such 

as A100, H100, GH200)

Can run on 

diverse hardware 

platforms including Intel, 

Nvidia, AMD GPUs

Supports wide range of 

Inference Optimizations

Supports wide 

range of Inference

Optimizations

Lacks key LLM optimizations 

and instead relies on GPU 

kernel optimizations

Lacks many 

optimizations and does 

not scale with increase in 

number of GPUs

Has wide Community 

Support

Developed within 

Nvidia

Developed within Microsoft Has wide Community 

support
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Open Source LLMs

7B Models

Large Models

LLaMA-2-7B

LLaMA-3-8B

Mistral-7B

Qwen-2-7B

LLaMA-2-70B

LLaMA-3-70B

Qwen-2-72B

Mixtral-8x7B

Large Language Models (LLMs)

MHSA

GQA

MoE

Dense Models
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LLM Inference – Basic Terms

Input Length: Input Length refers to the total number of tokens given to an LLM as input 
prompt for a single query. 

Output Length: Output Size, also referred to as maximum new tokens is the number of tokens 

produced by the model as a response to a single input prompt. 

Batch Size: Batch Size refers to the number of input sequences processed and new output 

sequences produced simultaneously.
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Performance Metrics

Perplexity quantifies the model’s level of surprise when encountering new data to generate a new token. A lower 

perplexity indicates better performance

Time to First Token (TTFT) is the amount of time 

required to produce the first output token after 

receiving an input prompt.

Time Per Output Token refers to the 

average time interval between generating 

consecutive tokens.

Throughput as the total number of tokens (both input and output) processed by the hardware per second.
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Impact of Batch Size, Input & Output Length
• Batch Size: Throughput increases with increase in the batch size until memory and compute are saturated

• This is due to the parallel computing nature of hardware to process batches in parallel

• Input Length: Throughput increases with increase in the size of input length

• This is due to the parallel computing of input sequence

• Output Length: Throughput decreases with increase in the size of output length

• This is due to sequential generation of output tokens based on all the previous tokens
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Efficient Transformer 

Neural Network Design

Type of Inference 

Optimizations

• Group Query 

Attention (GQA)

• Mixture of Experts 

(MoE)

LLM Algorithm 

Optimization Methods

Hardware and memory 

management Techniques

• Quantization

• KV Caching

• Speculative 

Decoding

Classification of LLM Inference Methods

• PaggedAttention

• Parallelism Methods

• Tensor

• Pipeline

• Expert

• Hybrid
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Transformer Model

Transformer Neural Network is comprised of two important layers: 

1) Attention Layer

2) Feed Forward Network (FFN)
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Multi-head Attention (MHA) vs Group Query Attention (GQA)

• GQA reduces memory and compute by a factor of "group size"

8 Query, Key and Value Heads 8 Query heads and 4 Key & Value Heads
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MHSA vs GQA Comparison

• MHSA is slower than GQA due to less number of KV heads and KV Cache

• Mistral-7B (GQA) > LLaMA-3-8B (GQA) > LLaMA-2-7B (MHSA)

• vLLM and TensorRT-LLM frameworks demonstrate improved performance using GQA models
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Mixture of Experts (MoE)

https://deepgram.com/learn/mixture-of-experts-ml-model-guide

• Dense Models: Dense LLMs are the traditional layer-by-layer transformer models connected in series 

• Mixture-of-Experts (MoE): MoE employs a combination of specialized sub-networks called experts and a 

gating mechanism to selectively activate only a subset of parameters for each input

• In a regular dense LLM, all parameters are active while in MoE only a few model weights are utilized

• Example: Mixtral-8x7B, GPT-MoE 1.8T

Layer 3

Layer 2

Layer 1

Input

Dense Model
MoE Model



Argonne Leadership Computing Facility21

MoE vs Dense LLMs

• Mixture of Experts (MoE) models are faster than Dense models for the similar parameter sizes due to 

less number of active parameters during inference.

• Mixtral-8x7B (MoE) > LLaMA-2-70B (Dense) > LLaMA-3-70B (Dense)

• vLLM and TensorRT-LLM frameworks demonstrate improved performance using MoE models
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Efficient Transformer 

Neural Network Design
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Optimizations
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Hardware and memory 

management Techniques

• Quantization

• KV Caching

• Speculative 

Decoding

Classification of LLM Inference Methods

• PaggedAttention

• Parallelism Methods
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Type of Inference 

Optimizations

LLM Algorithm 

Optimization Methods

• Quantization

• KV Caching

• Speculative 

Decoding

Classification of LLM Inference Methods
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LLM Quantization

LLaMa-3-70B model requires at least :

• FP16: 140GB memory 4 x 40GB A100 GPUs

• INT8: 70GB memory 2 x 40GB A100 GPU
• FP8:  70GB memory 2 x 40GB A100 GPU

• INT4: 35GB memory 1 x 40GB A100 GPU

• LLM Quantization Methods: GPTQ, AWQ
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Quantization Comparison

• Nvidia A100 Support:

• FP32, Fp16, Int8

• Nvidia H100 Support:

• FP32, FP16, Int8, FP8

• Quantization of the parameters (weights and activations) boosts the throughput of LLMs

• FP8 on H100 > Int8 on A100 for LLaMA-3-8B
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LLM Inference
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AI is the 

future

of

T = 1

LLM

of

technology

T = 2

LLM

technology

and

T = 3

LLM

and

innovation

T = 4

LLM

innovation

across

T = 5

Prefill Generation

KV Cache KV Cache KV Cache KV Cache

LLM Inference with KV Cache

LLM

KV Cache
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Impact of KV Cache

• KV Cache boosts the LLM Inference and becomes significant for longer sequence lengths

• VLLM, TensorRT-LLM, Deepspeed supports KV caching by default 

• No option to not use KV Cache in State-of-the-art frameworks

• We can unset KV Cache in Habana Processing Unit (HPU)
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Speculative Decoding

• Speculative Decoding is a widely used technique to speed up inference for LLMs without greatly 
compromising the output quality

• During inference, the speculative decoding method utilizes a smaller draft model (Eg: OPT-125M) to 

generate speculative tokens and then uses the larger LLM (LLaMA-2-7B) to verify those draft tokens.

• Both draft model and the main model should have the same vocab size

https://www.titanml.co/glossary/speculative-decoding
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Efficient Transformer 

Neural Network Design

• Group Query 
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Optimizations

Hardware and memory 
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• Tensor

• Pipeline

• Expert

• Hybrid



Argonne Leadership Computing Facility31

Classification of LLM Inference Methods

Type of Inference 

Optimizations

Hardware and memory 

management Techniques

• PaggedAttention

• Parallelism Methods

• Tensor

• Pipeline

• Expert

• Hybrid
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PagedAttention

• Paged Attention partitions the KV cache of each sequence into smaller, more manageable "pages" or 
"blocks". Each block contains key-value vectors for a fixed number of tokens.
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Impact of PagedAttention

• Frameworks supporting PagedAttention perform much 

better than the frameworks which do not have efficient 

implementation of KV Cache Blocking

• For example, TensorRT-LLM, vLLM and Deepspeed have 

support for PagedAttention and perform better llama.cpp

• Low KV Cache block sizes like 2,4 and 8 hurts the inference performance

• Block size greater than or equal to 16 produces optimal throughput

Llama.cpp
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Parallelism Techniques

• Tensor Parallelism (TP) 

• Distributes the weight tensor of a layer across 

multiple devices.

• The devices communicate with each other to share 

the input and output activations. 

• Pipeline Parallelism (PP)

• Divides the model into different layers, and each 

device computes its assigned layers and passes the 

output to the next device in the pipeline. 

• Expert Parallelism (EP)

• Distributes the experts of the MoE model across 

multiple devices

• Hybrid Parallelism (EP)

• Combines one or more parallelism techniques
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Parallelism Comparison – Tensor Parallelism

• Tensor Parallelism (within a single node) performs 

best due to better device utilization
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Parallelism Comparison – Pipeline Parallelism

• Tensor Parallelism (within a single node) performs 

best due to better device utilization

• Pipeline Parallelism (within a single node) has the 

least performance due to least utilization as only 
one device is active
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Parallelism Comparison – Hybrid Parallelism

• Tensor Parallelism (within a single node) performs 

best due to better device utilization

• Hybrid Pipeline Parallelism (a combination of 

Tensor and Pipeline Parallelism) offers flexibility 
and the performance is between the two methods
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LLM-Inference-Bench: Bridging LLMs, Accelerators and Frameworks

Open source LLMs 

LLaMA, Mistral, Qwen

AI Accelerators

Nvidia, AMD GPUs, 

SambaNova SN40L, 

Habana Gaudi

TensorRT-LLM

LLM-Inference-Bench
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Model Comparison

7B Models

• Mistral-7B performs better than LLaMA-3-8B 
due to one billion less parameters

• LLaMA-3-8B performs better than LLaMA-2-7B 
due to Group Query Attention (GQA) despite 

one billion more parameters

Large Models

• Mixtral-8x7B performs better than LLaMA-3-70B 
and LLaMA-2-70B due to mixture of experts layer 
utilizing less active parameters 

• LLaMA-2-70B performs better than LLaMA-3-70B 

due to smaller vocabulary size
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Framework Comparison

• TensorRT-LLM attains the highest 

throughput on Nvidia GPUs across different 
Large Language Models

• vLLM is the second best performer

• llama.cpp shows least performance due to 
lack of efficient transformer algorithm 

methods such as GQA and PaggedAttention
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Accelerator Comparison
• SambaNova SN40L achieves has the best performance among all the accelerators we benchmarked

• However, as of July 2024, the maximum batch size SN40L supports is 32

• Nvidia GH200 > H100 > A100 (in terms of throughput)

• MI300X and GH200 are comparable

• Habana Gaudi’s performance is between A100 and H100

• The performance of AMD MI250 saturates for large batch sizes
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Performance Dashboard and Code

https://github.com/argonne-lcf/LLM-Inference-Bench

Explore all the experimental results with interactive dashboard

Dashboard

Code



Argonne Leadership Computing Facility46

Future Works

Multimodal Models
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Any Questions?

• This research used resources of the Argonne 
Leadership Computing Facility, a U.S. Department of 
Energy (DOE) Office of Science user facility at Argonne 
National Laboratory and is based on research supported 
by the U.S. DOE Office of Science-Advanced Scientific 
Computing Research Program, under Contract No. DE-
AC02-06CH11357. 

• We gratefully acknowledge the computing resources 
provided and operated by the Joint Laboratory for System 
Evaluation (JLSE) at Argonne National Laboratory.

• We would like to thank collaborators at NVIDIA, AMD, 
SambaNova, Intel Habana

Thank You
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