
Path-synchronous Performance 
Monitoring in HPC Interconnection 
Networks with Source-Code 
Attribution
Adarsh Yoga and Milind Chabbi

13 November 2017



Motivation
• Inter-node data movement is a critical performance limiter

• Bottlenecks in interconnection networks can occur due to multiple

factors

• Application software design

• Network components provisioning and health

• Intra/Inter node job interference

• Topology/routing algorithms

• Network remains a black-box from a developer’s perspective

2



Bottleneck in NWChem

3

Source 

Node

Dest

Node

Switch Switch

Switch Switch

acq(rem_lk);

read acc;

Update acc;

Write acc;

release(rem_lk);

CPU-side Profile 

shows this line 

executes for 26% 

of the time

Cause not known!

• Is there load imbalance?

• Is it due to inefficient lock implementation? 

• Is there interference for another job?

• Is it a network bandwidth problem?



Detailed Insight Necessary

4

Node

Node

Node

Node

Node

Node

.

.

.

.

.

.

Switch Switch

Switch Switch

• State-of-the-art tools monitor 

the performance only within a 

node

• Detailed insight into the data 

movement and consequence 

on application source code 

necessary

N

I

C

N

I

C

N

I

C

N

I

C

N

I

C

N

I

C



Detailed Insight Necessary

5

Node

Node

Node

Node

Node

Node

.

.

.

.

.

.

Switch Switch

Switch Switch

N

I

C

N

I

C

N

I

C

N

I

C

N

I

C

N

I

C

• State-of-the-art tools monitor 

the performance only within a 

node

• Detailed insight into the data 

movement and consequence 

on application source code 

necessary

• Many performance problems 

can be fixed by simple refactor 

of application source code



Our Work
Goal: Identify performance problems that occur in the network and correlate to

application source code.

Approach:

• Track the movement of packets through the network

• Collect performance metrics about the packets at every step

• Attribute metrics to application source code

• Aid application developer with rich visualization and automatic data

ingestion

6



Overview

7

Input MPI 

program

Performance 

Stats Collection

Path 

Construction

Performance 

Visualization

Output 

graphs



Performance Stats Collection
• Tracking all messages/packets is expensive

• Use sampling to randomly/smartly select messages to monitor

• A single bit (PM bit) in packet header used to track packets that are

selected to be monitored (marked packet)

• Advantages:

• Unsynchronized data collection in concurrent autonomous many-component systems

• Hop-by-hop path synchronous metrics

8



Node-side Stats Collection
• Software profiler selects a message

at random and marks it to be tracked

• Both source and destination nodes

collect stats for a marked message

• Stats: source node id, destination

node id, message id, departure

time/arrival time, application side

calling context

9

Source 

Node

Dest

Node

Switch Switch

Switch Switch

Node 

log

Node 

log



NIC and Network-side Stats
• For a marked message, NIC 

hardware selects one among N 

packets and sets PM bit in header

• Could select more than one packet

• NIC and switch collect stats for the 

packet if PM bit set

• Stats: output port, arrival time, 

departure time, buffer size, credits

10

Source 

Node

Dest

Node

Switch Switch

Switch Switch

Nic 

log

Nic 

log

N

I

C

N

I

C

Switch 

log

Switch 

log



Hardware Extensions
• Goal is to minimize time spent in logging performance stats at NIC and 

Switch

• Log to a on-chip circular bounded buffer and a independent hardware 

component periodically drains logs from the buffer

11

N

I

C

DRAINER

NODE SWITCH

DRAINER

SWITCH

DRAINER

NIC and switch 

add logs to the 

end of buffer

Drainer periodically reads 

from buffer and write to a 

collection server (NFS 

mounted file)



Implementation – SST/Macro
• Simulator for large-scale interconnection networks

• Emphasize coarse-grain approximations over accuracy

• Pros:

• Modular design; can be easily extended with additional network

components

• Perform analysis of varying network design parameters like

machine models, packet flow models and topologies

• Model realistic applications using Skeletons – MPI

communication with limited computation

12



SST/Macro for Stats Collection
• Extended to Node module implementation to

• randomly select messages to monitor

• Log node side performance statistics

• Extended the Nic and the Switch module to collect performance

statistics and write to the buffers

• Implemented the Drainer as sub-component of the Node and Switch

module and added buffers to hold the logs

13

Output: Set of log files containing performance statistics for 

monitored packets



Overview

14

Input MPI 

program

Performance 

Stats Collection

Path 

Construction

Performance 

Visualization

Output 

graphs



Path Construction
• A software tool to reconstruct path taken by every marked packet

• Compute per-component performance statistics (e.g. delay) at each hop

in the path

• Complete calling context with source code attribution at the end points

15



Path Construction Algorithm

16

…

0,i, …,port,dep time

…

Node log 0For each log 

entry of a packet 

originating for 

the same node 

Obtain next hop log 

using output port 

and config info 

…

0, …,port,dep time

…

Switch log 0

Use departure time + 

delta to find a range of 

entries. Then use src id, 

dest id, message/packet 

id to find exact entry

…… …..

Node log i

…

…

…

0,i, …,port,dep time

…

Node log n

……
Repeat the same 

process for all n 

Nodes in parallel



Overview

17

Input MPI 

program

Performance 

Stats Collection

Path 

Construction

Performance 

Visualization

Output 

graphs



Performance Visualization
• Idea is to identify messages that took the most amount of time

• Identify a pattern among the messages, e.g. all the slow

messages happened in a small time window

• Identify patterns for e.g. the slow messages were due to a bottleneck

in a particular component

• Generate a heatmap to visualize entire network interaction

• Per-node stacked bar graphs to identify delays in specific components

18



Evaluation
• Environment: 4 socket, 60 core Intel Xeon machine with 1 TB DRAM

• Simulated NERSC Edison system with Dragonfly topology containing

5586 nodes

• Set of 3 MPI skeleton applications – Ncast, Broadcast and MultiApp

• Evaluation parameters:

• Is our prototype effective in identifying performance bottlenecks

in the network due to application source code?

• Is the overhead of network low enough to be practical?

19



Heatmap of Ncast program

20

Messages from node 

80 and above appear 

darker; take the most 

amount of time

Process ID

Message Start Time in nano seconds



Per-node Bar Graph of Ncast

21

The most time 

is spent in 

Switch 21

The most time 

is spent in 

Switch 21



Efficiency of Network Monitoring
• Average simulation time overhead of 0.16% for all three applications

with sampling rate of 1 in every 100 packets

• Average increase in wall clock time was 4.8% over base execution

without our extensions

• Average size of log files generated was 61 MB

22



Conclusion
• Lightweight monitoring of network internals is essential to provide

deeper insights into performance problems

• Solution: protocol extensions, hardware extensions and software

solutions to provide deeper insights into performance problems

• Designed and prototyped an extendable performance analysis

framework with broad applicability

23



Future Work
• In-depth assessment of this capability on more realistic and mixed workloads

• Working with vendors to include the capability in the hardware

24



Thank you!

Our tool is available at https://github.com/HewlettPackard/genz_tools_network_monitoring

25

https://github.com/HewlettPackard/genz_tools_network_monitoring

