
A performance study of Quantum 
ESPRESSO's PWscf code on multi-core 
and GPU systems

Josh Romero, Everett Phillips, Gregory Ruetsch, Massimiliano Fatica - NVIDIA
Filippo Spiga - University of Cambridge (UK)
Paolo Giannozzi  - University of Udine (IT)

PMBS17 Workshop, Supercomputing 17, Denver, CO, November 13 2017



Outline

● Quantum ESPRESSO/PWscf

● GPU implementation in CUDA Fortran

● Benchmarking and Results

● Conclusions



Quantum ESPRESSO/PWscf



Quantum ESPRESSO (QE)

● Integrated suite of open-source software for simulations of materials based on 
density-functional theory

● Complete distribution contains approximately 520,000 lines of Fortran 95 
source code

● Popular package widely used within academia and industry



Plane-Wave Self-Consistent Field (PWscf)

● One of the main programs distributed with QE

● Computes the Kohn-Sham (KS) orbitals and energies of material systems

● Uses an iterative method that seeks self-consistent input and output charge 
densities

● See Giannozzi et al. J. Phys 2009 Appendix A.2 for details



Plane-Wave Self-Consistent Field (PWscf)

● Each iteration requires:
○  Diagonalization of the Hamiltonian operator HKS 

■ done iteratively using a block Davidson method
■ performed for each KS orbital (k-point) across bands

○ Computation of output charge density using diagonalization results

● Repeated until self-consistency is obtained within a desired tolerance



Parallelization Options

● PWscf has a number of parallelization options available. Options used in this 
study:
○ k-point parallelization using -npool:

■ Distributes k-points into NK pools of processes. 
■ Enables parallel execution of the iterative diagonalizations. 

○ Linear algebra parallelization using -ndiag:
■ Distributes the dense diagonalization, needed by the block Davidson 

algorithm, among ND processes.
■ Enables use of distributed eigensolver like ScaLAPACK



GPU Implementation in CUDA Fortran



CUDA Fortran

● Since baseline CPU code is written in Fortran, natural choice for GPU port is 
CUDA Fortran.

● CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica is a good 
starting reference.

● Requires PGI compilers, free community editions now available at 
www.pgroup.com



CUDA Fortran

● Benefits:
○ More control than OpenACC:

■ Explicit GPU kernels written natively in Fortran are supported
■ Full control of host/device data movement

○ Directive-based programming available via CUF kernels

○ Easier to maintain than mixed CUDA C and Fortran approaches



Profiling with NVPROF + NVVP + NVTX

● When porting programs, profiling (and profiling often) is very important:
○ Identify and focus efforts on performance-critical sections of the program

○ Understand interactions between CPU and GPU:
■ Am I getting expected H2D/D2H BW over PCIe or NVLink?
■ Can I hide this data movement behind GPU computation?

○ Understand library behavior:
■ How is my linked MPI library handling communication between GPUs?
■ Is the CPU being used in any library computations? 



Profiling with NVPROF + NVVP + NVTX

● NVPROF:
○ Powerful profiler provided in every CUDA toolkit installation
○ Can be used to gather detailed kernel properties and timing information

● NVIDIA Visual Profiler (NVVP):
○ Graphical interface to visualize and analyze NVPROF generated profiles
○ Does not show CPU activity out of the box

● NVIDIA Tools EXtension (NVTX) markers:
○ Enables annotation with labeled ranges within program
○ Useful for categorizing parts of profile to put activity into context
○ Can be used to visualize normally hidden CPU activity (e.g. MPI communication)



Sample NVVP segment from AUSURF112 on 
NVIDIA DGX-1 System 



GPU Porting of Key Computational Routines

● The iterative diagonalization and computation of charge density are dominated 
by three basic operation types:
○ Level-3 BLAS routines, predominantly Z/DGEMM
○ 3D Fast Fourier Transforms (FFT), typically distributed
○ dense-matrix diagonalization via LAPACK or ScaLAPACK

● BLAS routines easily ported using available routines in CUBLAS library

● 3D FFT and dense-matrix diagonalization more involved

● Remaining routines ported to GPU as necessary for performance or to remove 
redundant host/device data movement



3D Fast Fourier Transforms

● Required in iterative diagonalization and charge computation

● Component 1D FFT computations computed using CUFFT

● Generally distributed among the processes in each k-point pool:
○ requires transposition and data communication across processes using 

MPI_Alltoall or similar communication pattern

○ Many 3D FFT computations for each k-point, one for each band index



3D Fast Fourier Transforms

● Existing CPU implementation not amenable to a performant GPU port:
○ Individual FFTs for each band too small to saturate GPU resources

○ No attempt to overlap FFT computation with MPI communication:
■ problematic on GPU systems in cases where communication buffers must be 

staged through the host

● To address these issues, implemented a batched FFT strategy where multiple 
band FFTs computed together
○ More available concurrent work for better GPU utilization
○ Provides straightforward mechanism for pipelining data movement and 

computation 
○ Requires more memory, but this was not an issue in tested cases



3D Fast Fourier Transforms

● As a further optimization, implemented all-to-all communication using 
non-blocking MPI_Isend/MPI_Irecv
○ Important on systems which are capable of multiple concurrent peer-to-peer (P2P) 

transfers between GPUs

● A number of MPI distributions we tried showed suboptimal utilization of 
available P2P bandwidth on systems with multiple P2P connections
○ For all-to-all, implemented explicit handling of P2P communication using CUDA 

interprocess communication (IPC), with non-peer transfers handled by linked MPI 
library



Diagonalization

● The dense-matrix diagonalization, used for the block Davidson method, is 
another computationally expensive routine.

● Consists of computing eigenvalues and eigenvectors of a modest size system 
(N x N with N ~ O(103)) using a dense eigensolver

● On CPU, this operation is typically distributed over ND processes and 
computed using ScaLAPACK, or similar library



Diagonalization

● Current GPU port targets serial path (ND = 1) using a custom developed GPU 
eigensolver 
○ one GPU per k-point pool performs the dense-matrix diagonalization

● Custom solver used in lieu of several existing options for GPU, like MAGMA:
○ Written to reduce dependencies on CPU resources for computation, only reduced 

tridiagonal solve completed on CPU using LAPACK
○ Beneficial on “fat” nodes, with high GPU to CPU socket ratios, where bottlenecks 

due to limited CPU resources can arise

● See GTC talk for more info on the solver development



Benchmarking and Results



Testing Details
● Performance results for two benchmark cases were obtained on several GPU 

systems and a reference CPU system.

● On reference CPU system:
○ Distributed ELPA solver used for diagonalization (ND > 1)
○ MKL for other BLAS/LAPACK routines
○ OpenMP enabled, tried many configurations with best cases reported

● On GPU systems:
○ Custom serial eigensolver used for diagonalization (ND = 1)
○ CUBLAS for BLAS routines on GPU, MKL/ESSL for any BLAS/LAPACK CPU routines
○ GDR features tested on systems with P2P connectivity (CUDA-aware MPI + custom 

IPC)
○ OpenMP enabled on Intel-based systems
○ OpenMP disabled on IBM system in favor of using multithreaded ESSL



NVIDIA DGX-1

Piz Daint 
(CSCS)

Summit Dev
(ORNL)

Wilkes-2
(Cambridge)

CPU

GPU

NIC

PCIe NVLink

PLX



Benchmark Cases

● AUSURF112:
○ Gold surface with 112 atoms 

and 2 k-points
○ Smaller case suitable for 

workstations and small 
distributed systems

● Ta2O5:
○ Tantalum pentoxide with 96 

atoms and 26 k-points. 
○ Larger case suitable for 

scaling from small to large 
distributed systems



AUSURF112: 
PWscf Time

● Factor of 2-3 speedup 
using GPU relative to 
CPU system

● Fixing number of 
resources per pool gives 
nearly linear scaling with 
increased resources

● Increasing number of 
resources per pool less 
efficient



AUSURF112: 
PWscf Time

● Factor of 2-3 speedup 
using GPU relative to 
CPU system

● Fixing number of 
resources per pool gives 
nearly linear scaling with 
increased resources

● Increasing number of 
resources per pool less 
efficient



AUSURF112: 
PWscf Time

● Factor of 2-3 speedup 
using GPU relative to 
CPU system

● Fixing number of 
resources per pool gives 
nearly linear scaling with 
increased resources

● Increasing number of 
resources per pool less 
efficient



AUSURF112: 8 GPU/CPU

● GPU vs. CPU systems:
○ Faster performance on 

GPU systems
○ GPU eigensolver 

outperforming ELPA
● GPU systems:

○ FFT performance 
improvement with GDR

○ Eigensolver on Summit 
Dev slower than on Intel 
systems, more consistent 
across Intel systems

Results from paper



AUSURF112: 8 GPU/CPU

● GPU vs. CPU systems:
○ Faster performance on 

GPU systems
○ GPU eigensolver 

outperforming ELPA
● GPU systems:

○ FFT performance 
improvement with GDR

○ Eigensolver on Summit 
Dev slower than on Intel 
systems, more consistent 
across Intel systems

Updated results using V1.0



Ta2O5: 
PWscf Time

● Similar performance trends 
to AUSURF112 case

● Larger number of available 
k-points allows for scaling 
out further



Ta2O5: 
PWscf Time

● Similar performance trends 
to AUSURF112 case

● Larger number of available 
k-points allows for scaling 
out further



Ta2O5: 
PWscf Time

● Similar performance trends 
to AUSURF112 case

● Larger number of available 
k-points allows for scaling 
out further



Ta2O5: 104 GPU/CPU

Results from paper

● GPU vs. CPU systems:
○ ELPA faster in this 

case, but GPU 
eigensolver remains 
competitive

● GPU systems:
○ On fat systems, GDR 

required for high FFT 
performance

○ Summit Dev has high 
FFT performance 
without GDR due to 
host-device NVLink



Ta2O5: 104 GPU/CPU

Updated results using V1.0

● GPU vs. CPU systems:
○ ELPA faster in this 

case, but GPU 
eigensolver remains 
competitive

● GPU systems:
○ On fat systems, GDR 

required for high FFT 
performance

○ Summit Dev has high 
FFT performance 
without GDR due to 
host-device NVLink



Ta2O5: 104 GPU/CPU

Updated results using V1.0

● GPU vs. CPU systems:
○ ELPA faster in this 

case, but GPU 
eigensolver remains 
competitive

● GPU systems:
○ On fat systems, GDR 

required for high FFT 
performance

○ Summit Dev has high 
FFT performance 
without GDR due to 
host-device NVLink



Si63Ge (vc-relax)

QE-GPU CSCS QE CSCS QE Cineca

1 P100 10 P100 20 BW (360c) 1 KNL (60c) 10 KNL (640c)

npool 1 10 10 5 10

init_run 15.92s 7.50s 4.45s 21.61s 10.33s

electrons 668.06s 108.78s 235.58s 1542.72s 292.86s

update_pot 1.37s 1.04s 10.42s 31.95s 7.94s

forces 12.06s 3.03s 13.20s 60.91s 11.93s

stress 74.28s 15.82s 75.69s 260.82s 38.55s

cdiaghg 71.38s 6.89s 15.51s 147.97s 76.15s

PWSCF 774.49s 138.70s 342.26s 1934.28s 400.29s

Fermi energy 6.5908 ev 6.5908 ev 6.5908 ev 6.5908 ev 6.5908 ev

Total energy -813.93522903 Ry -813.93522903 Ry -813.93522904 Ry -813.93522904 Ry -813.93522903 Ry

Total force 0.002992 0.002992 0.002992 0.002992 0.002992

Total stress 0.00000062 0.00000062 0.00000062 0.00000062 0.00000062

Pressure 0.09 0.09 0.09 0.09 0.09

BW/KNL results from https://github.com/electronic-structure/benchmarks 



Conclusions



Conclusions

● New GPU implementation can reduce time to solution by a factor of 2 - 3 
relative to the reference CPU system

● Custom serial GPU eigensolver provides competitive performance relative to 
ScaLAPACK and ELPA with limited sensitivity to host resources. Available on 
Github at: https://github.com/NVIDIA/Eigensolver_gpu

● Full utilization of P2P resources essential for high performance, especially on 
systems with large GPU to CPU socket ratios 

● CUDA-accelerated version of QE is open-source and available on Github at: 
https://github.com/fspiga/qe-gpu


