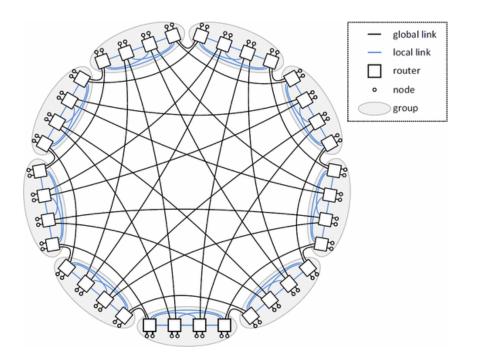
Modeling UGAL routing on the Dragonfly topology

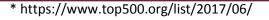
Md Atiqul Mollah, Peyman Faizian, Md Shafayat Rahman, Xin Yuan

Florida State University

Scott Pakin, Michael Lang Los Alamos National Laboratory

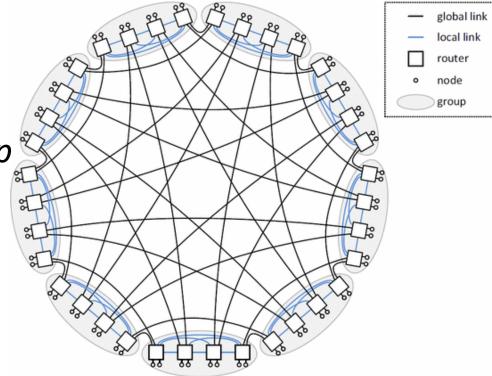


Motivation


- Interconnect is a vital part of modern day HPC systems
 - potential performance bottleneck of the entire system
 - especially on exascale(or even near-exascale)
- Important to measure interconnect performance while designing
 - through modeling and simulation
 - Modeling provides a holistic view
 - Simulation provides a more component-level view
 - In this work, we focus on modeling

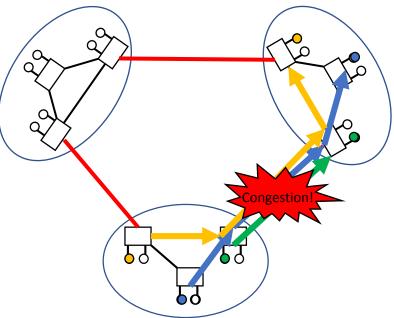
Dragonfly Topology

- Used in current generation interconnects
- Scalable, cost-efficient design
- Used in Cray[®] Cascade system/XC[®] series
- In TOP500*:
 - Piz Daint(#3), Cori(#6), Trinity(#10)
 - 28 in the top 100



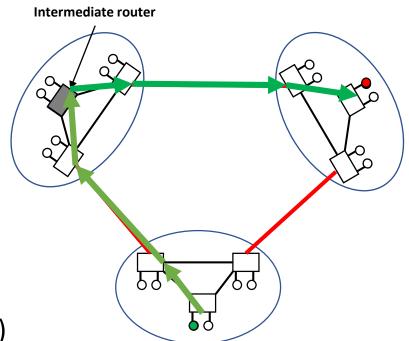
72 node dragonfly with fully connected inter- and intra-group By M. García *et al.*, "On-the-Fly Adaptive Routing in High-Radix Hierarchical Networks," ICPP*2012*

Dragonfly Construction


- 2-level hierarchical design
- Local interconnection of links forms a group
 - topology of choice
 - each group imitates a high-radix router
- Fully connected inter-group topology
 - using long *global* links

72 node dragonfly with fully connected inter- and intra-group By M. García *et al.*, "On-the-Fly Adaptive Routing in High-Radix Hierarchical Networks," ICPP*2012*

Dragonfly Routing


- Minimal Path Routing (MIN)
 - Local routing in source group
 - Global link hop
 - Local routing in destination group
- Performs well for *benign*(e.g. uniform) traffic
- Dragonfly has limited MIN path diversity
 - canonical design has only 1 MIN path per node pair
 - leads to bottleneck on certain *adversarial* traffic patterns

Dragonfly Routing

- Valiant's Load-balancing (VLB)
 - Choose intermediate(intm.) router randomly
 - MIN route from source to intm.
 - MIN route from intm. to dest.

- VLB diffuses any bottleneck traffic
 - High path diversity
 - Also high end-to-end latency(2 times that of MIN)

Dragonfly Adaptive Routing

- A single routing scheme(MIN/VLB) does not suit all traffic patterns
- Adaptive routing combines the benefit of both schemes.
 - Choose between a MIN and a VLB path based on traffic condition
 - Routing decision taken on-the-fly for each packet

Universal Globally Adaptive Load-balanced(UGAL) Routing

- For each packet, Pick one MIN and one VLB randomly
- From the two, choose path with minimum estimated latency
- Obtained from router queue length information
- Performs well for both benign and adversarial traffic patterns

q_7 q₃ q_6 q_5 q_2 0 0 ō ō 0 0 MIN path VLB path router router VLB delay: 9 q₄ q₁ **MIN delay: 11** Source choose VLB Router

Downstream routers

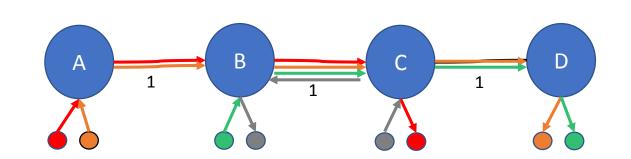
Characterizing UGAL

- Why does UGAL perform so well?
 - just a greedy heuristic to maximize network throughput
 - Only a small subset of dragonfly designs have been studied
 - Lacking formal analysis
- How close is UGAL performance to its upper bound?
- Can other routing schemes perform better than UGAL?

Modeling UGAL for dragonfly topology

Model the throughput optimization problem Identify distinguishing features of UGAL

Modify throughput optimization model based on UGAL characteristics


3

Verify model by comparing to simulation results

1. Modeling Throughput optimization

- Given a traffic pattern, we find the Maximum Concurrent Flow(MCF) rate
 - MCF is the bandwidth at which **ALL** communications can inject traffic
 - In other words, it is the *guaranteed throughput* for any communication
- Example: For traffic pattern A->C, A->D, B->D, C->B
 - MCF = max{ $\frac{capacity(l)}{load(l)}$: $l \in E$ }
 - = 0.3333

LP formulation for MCF [¥] [Shahrokhi et al. '90]

Given

F =traffic pattern/set of flows E = set of links x_d = bandwidth used by flow d, $d \in F$ P_d = set of all paths, $d \in F$ $P_d(e)$ = paths using link e, $d \in F$, $e \in E$ C (e)= Link capacity function, $e \in E$

Maximize
Concurrent flow rate
$$\alpha$$

Subject to
 $\alpha - x_d = 0 \quad \forall d \in F$
 $x_d = x_d^1 + x_d^2 + \dots + x_d^{|P_d|} \quad \forall d \in F$
 $\sum_{d \in F, p \in P_d, (e)} x_d^p \leq C(e) \quad \forall e \in E$

2. UGAL Features

- Feature 1: UGAL considers all MIN and VLB paths
 - Instead of all possible paths
- Feature 2: UGAL randomly selects a small number of MIN and VLB paths as candidate paths for each packet.
 - All paths equally likely to be selected
- Feature 3: UGAL implicitly differentiates paths of different lengths.
 - Biased towards picking shorter paths

3. Modify MCF model based on UGAL Features

- Feature 1: UGAL considers all MIN and VLB paths
- For each flow $d \in F$, consider
 - P_d^{MIN} = all available MIN paths
 - P_d^{VLB} ; = all available VLB paths
- Modify MCF model

$$\begin{aligned} x_d &= x_d^1 + x_d^2 + \ldots + x_d^{|P_d|} \ \forall d \in F \\ x_d &= \sum_{p \in P_d^{MIN}} x_d^p + \sum_{q \in P_d^{VLB}} x_d^q \end{aligned}$$

3. Modify MCF model based on UGAL Features

- Feature 2: UGAL randomly selects candidate MIN and VLB paths for each packet
 - For large enough sample space all MIN paths of a flow could be used equally

$$x_d^p = x_d^{MIN} \qquad \forall p \in P_d^{MIN}$$

• All VLB paths of a flow could be used equally

$$x_d^q = x_d^{VLB} \qquad \forall q \in P_d^{VLB}$$

3. Modify MCF model based on UGAL Features

- Feature 3: UGAL differentiates paths of different lengths
 - all same-length MIN paths of a flow could be used equally

$$x_d^p = x_d^{MIN,L}$$
 $\forall p \in P_d^{MIN}, |p|=L$

• All same-length VLB paths of a flow could be used equally

$$x_d^q = x_d^{VLB,L} \qquad \forall q \in P_d^{VLB}, |q| = L$$

Step 3: Modify MCF model based on UGAL

- Three level of control for MIN and VLB paths:
 - Individual: all paths may have unique, optimized bandwidth (least restricted)
 - Path-length-based random: all paths of the same length treated equally, have same bandwidth
 - All-random: all paths treated equally, have same bandwidth (most restricted)
- We do not know which feature dictates overall performance
- Therefore, we introduce these features in different extents
- Model for MIN and VLB separately

Model 1

- Individual control over MIN paths
- Path length-based control over VLB paths

Maximize
$$\alpha$$

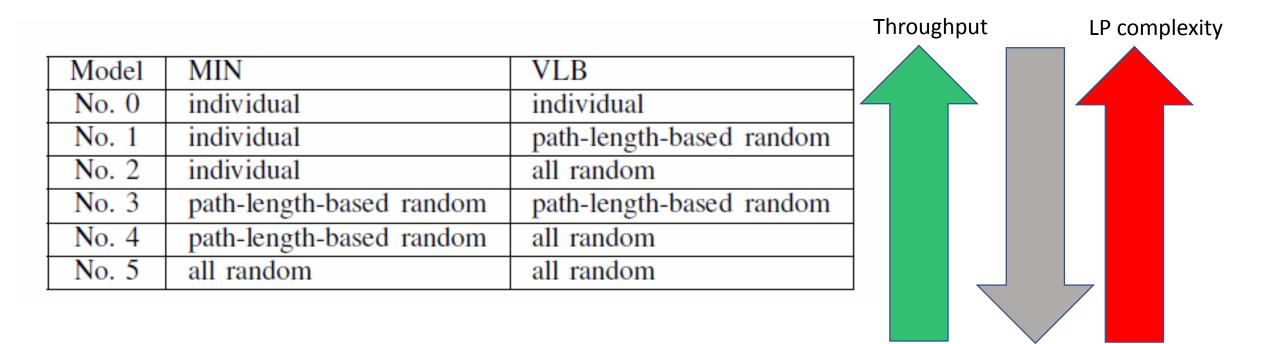
Subject to:
 $\alpha - (\sum_{p \in P_d^{MIN}} x_d^p + \sum_{P_d^{VLB,L} \neq \emptyset} |P_d^{VLB,L}| \times x_d^{VLB,L}) \leq 0, \ \forall d \in F$
 $\sum_{p \in P_d^{MIN}(e), d \in F} x_d^p + \sum_{P_d^{VLB,L}(e) \neq \emptyset, d \in F} |P_d^{VLB,L}(e)| \times x_d^{VLB,L} \leq C_e, \forall e \in E$

- Individual control over MIN paths
- All-Random control over VLB paths

Maximize
$$\alpha$$

Subject to:
 $\alpha - (\sum_{p \in P_d^{MIN}} x_d^p + |P_d^{VLB}| \times x_d^{VLB}) \le 0, \ \forall d \in F$
 $\sum_{p \in P_d^{MIN}(e), d \in F} x_d^p + \sum_{P_d^{VLB}(e) \neq \emptyset, d \in F} |P_d^{VLB}(e)| \times x_d^{VLB} \le C_e, \ \forall e \in E$

• Path length-based control over both MIN and VLB paths


Maximize
$$\alpha$$

Subject to:
$$\alpha - \left(\sum_{P_d^{MIN,L} \neq \emptyset} |P_d^{MIN,L}| \times x_d^{MIN,L} + \sum_{P_d^{VLB,L} \neq \emptyset} |P_d^{VLB,L}| \times x_d^{VLB,L}\right) \leq 0, \forall d \in F$$
$$\sum_{\substack{P_d^{MIN,L}(e) \neq \emptyset, d \in F}} |P_d^{MIN,L}(e)| \times x_d^{MIN,L} + \sum_{\substack{P_d^{VLB,L}(e) \neq \emptyset, d \in F}} |P_d^{VLB,L}(e)| \times x_d^{VLB,L} \leq C_e,$$
$$\forall e \in E$$

More models!

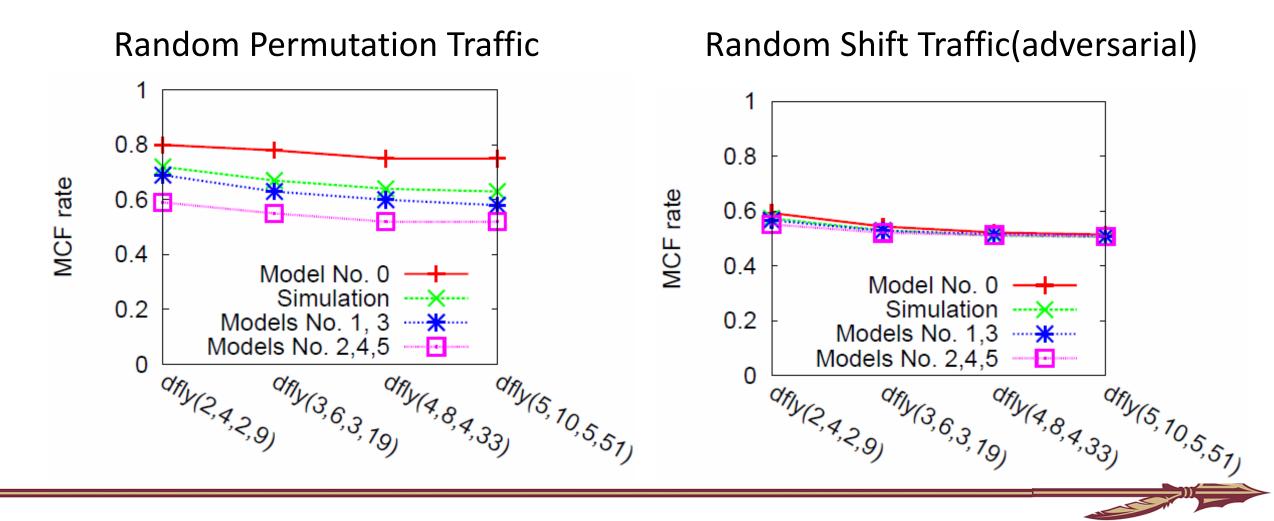
- Model 4:
 - Path length-based MIN path rates
 - All-random VLB path rates

- Model 5:
 - All-random MIN and VLB path rates

Models Summary

Scalability

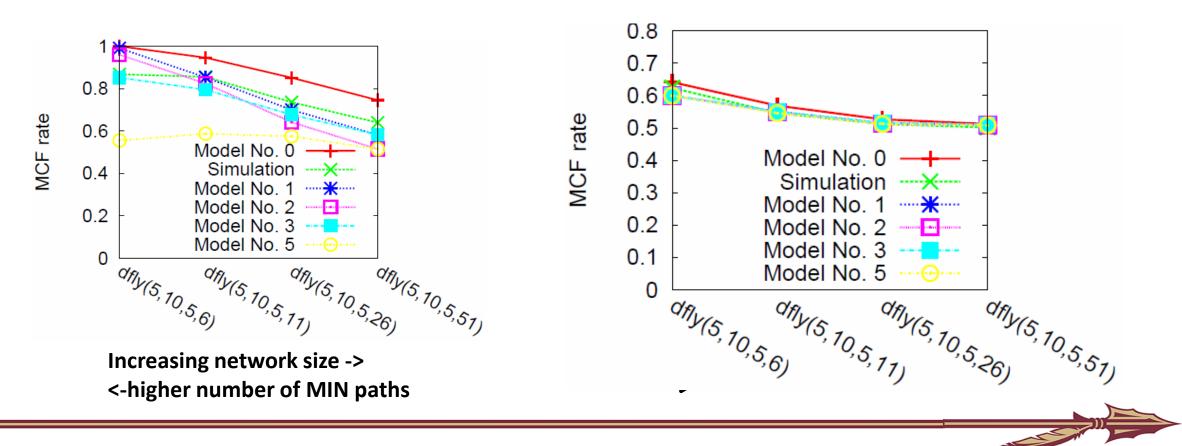
Step 4. Validation and Analysis


- Used LP models to calculate the Max. Concurrent Flow rate
- Topologies:
 - Dragonfly *dfly(p,a,h,g)*:
 - fully connected groups of *a* routers, *p* nodes and *h* global links per router, *g* groups
 - Cascade
 - 96-router group in 16 x 6 HyperX, 4 nodes per router, 6 groups
 - global connections taken from NERSC's Edison topology dump**

Simulated UGAL on same topologies in Booksim* Interconnect Simulator

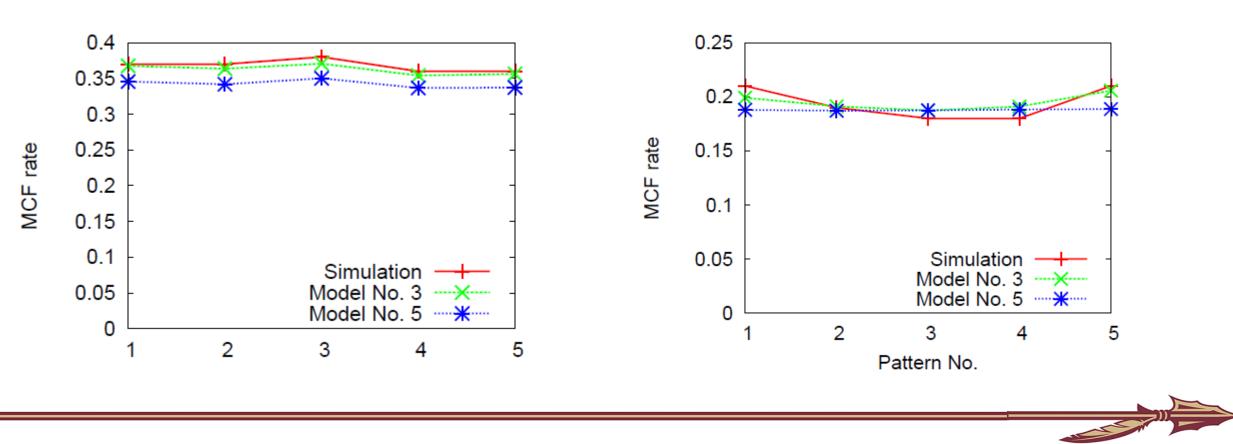
http://www.nersc.gov/users/computational-systems/edison/

*N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogiannakis, A detailed and flexible cycle-accurate network-on-chip simulator, ISPASS' 2013


Model validation: Canonical Dragonfly

Model validation: Varying # of groups

Random Permutation Traffic



Model validation: Cascade Topology

5 random permutations

5 random shift patterns

- We develop a set of throughput models for UGAL on Dragonfly topology
- We identify an efficient model that accurately characterize UGAL on various Dragonfly designs
- We learn that UGAL on dragonfly optimizes throughput performance partially, based on path length

Thank you! Questions?

Md Atiqul Mollah mollah@cs.fsu.edu

