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Abstract. The HPC community has been using abstract, representative
applications and architecture models to enable faster co-design cycles.
While developers often qualitatively verify the correlation of the appli-
cation abstractions to the parent application, it is equally important to
quantify this correlation to understand how the co-design results trans-
late to the parent application. In this paper, we propose a multi-fidelity
surrogate (MFS) approach which combines data samples of low-fidelity
(LF) models (representative apps and architecture simulation) with a few
samples of a high-fidelity (HF) model (parent app). The application of
MFS is demonstrated using a multi-physics simulation application and
its proxy-app, skeleton-app, and simulation models. Our results show
that RMSE between predictions of MFS and the baseline HF models
was 4%, which is significantly better than using either LF or HF data
alone, demonstrating that MFS is a promising approach for predicting
the parent application performance while staying within a computational
budget.

Keywords: performance estimation, multi-fidelity surrogate, behavioral
emulation

1 Introduction

As we approach exascale computing, the next frontier in high-performance com-
puting, it is important that application developers and system designers co-
design to develop better performing and more energy efficient application codes
and machines [6]. For fast and effective turnaround during the co-design pro-
cess, application developers create representative applications which are ab-
stract, smaller, and self-contained descriptions of their application code (also
called parent app) and only capture the key parameters and features that pre-
dominantly influence the outcome of co-design [13]. To further speed up the
co-design process and to enable architecture design-space exploration (DSE),
system architects build simulator models to study the application performance



on various underlying architectures. Behavioral Emulation (BE) [19] is one such
coarse-grained approach for simulation of extreme-scale systems and applica-
tions. While the parent application can be used to drive architecture simulations,
abstract application end-point models are often used to represent the parent app
to speed up the co-design process.

Representative applications, in the form of mini-apps, proxy-apps, or skeleton
apps, have been developed for many scientific HPC codes (parent app) and are a
necessity in cases where the actual application cannot be shared with the hard-
ware architects [5,7,16,18]. After development, it is important to validate these
representative apps against their parent apps to ensure they are reasonably accu-
rate representations of the application behavior. Typically, this qualitative vali-
dation is performed by comparing ratio of computation to communication, weak
scaling and strong scaling trends, similarity analysis, etc. Similarly, performance
prediction results of architecture simulations are verified against testbed mea-
surements. After validation, both the representative apps and simulator models
can be used as platforms to evaluate tradeoffs for improved performance, power,
and resilience, different programming models, compilers, etc. and guide the re-
finement of parent application. Qualitative validation is important; however, it
is also important to determine quantitatively how the improvements in a rep-
resentative app or architecture translate to the parent app. To the best of our
knowledge no solution for quantitative validation of representative applications
under a reasonable computational budget has been proposed in the literature.

In general, surrogate models are approximations that are fit to the available
data of a phenomenon of interest, herein the parent app. A high-fidelity surro-
gate model (HFM) can be constructed from more accurate and computationally
expensive high-fidelity data (e.g., benchmarking data using parent app); and a
low-fidelity model (LFM) can be constructed from computationally cheaper but
less accurate low-fidelity data (e.g., skeleton apps, simulation results). In this pa-
per, we propose the use of a multi-fidelity surrogate model (MFS) for identifying
the relation between parent and representative apps. The MFS works when LF
and HF have similar trends/curvature in the design space. An indication of trend
similarity between LF and HF is the scale factor. A scale factor around 1 de-
notes high correlation between HF and LF whereas a negative or extremely large
scale factor denotes an inappropriate LF under certain discrepancy (discussed
in Section 4).

The concept of MFS has been extensively studied to approximate the high-
fidelity models (HFMs) assisted by cheaper low-fidelity models (LFMs) [12]. To
balance accuracy and computational cost associated with data collection, the
MFS approach aims to develop a surrogate model based mostly on LF samples
assisted with only a few HF samples. Typical multi-fidelity models include fi-
nite element analysis with different resolution, physical tests versus numerical
simulations, etc. [12, 17,25].

Representative apps are often used for studying the performance impact of
various optimization techniques. But it is important to validate these changes on
the parent app. In order to use our proposed approach, changes have to be made



to both the representative and parent app. The payoff of the additional effort
required for modifying the parent app is the ability to validate performance over
a considerably larger design space at a very low cost. In addition to low-cost
validation of parent app, our proposed approach can also be used for predicting
performance of the parent app with BE simulations of notional architectures
as the source of LF data for developing the MFS. The HF data for notional
architectures could be obtained from fine-grained simulators over a small subset
of design-space. BE’s ability to simulate any hardware through an architecture
model, whether existing or notional, adds an additional capability of predicting
performance of the parent app on the future systems quantitatively at a low
cost.

In this paper, we leverage many of the MFS methods developed in other
scientific domains and adapt and apply them to reduce the computational cost
of validation of representative apps used in the HPC co-design process. After a
survey of the related research in Section 2, in section 3 we present an overview
of the parent application case study (CMT-nek), its representative mini-app
(CMT-bone) and skeleton app (CMT-bone-BE), and the Behavioral Emulation
approach that we use for performance modeling and simulation. In Sections 4
and 5, we describe a methodology for developing an MFS for an application
from its mini-app (HFM), skeleton app (LFM), and a simulator model (LFM).
In Section 6, we demonstrate the usefulness of the proposed methodology by
applying it to a multi-physics simulation application being developed for exascale
systems - CMT-nek [1]. The results demonstrate MFS as a promising approach
for predicting parent application performance (HF model) from representative
app or architecture simulation (LF model) while staying within a reasonable
computational budget.

2 Related Research

Mini-apps have become extremely important for exascale DSE and performance
optimization. In [9], which presents a validation methodology, the authors state
that mini-apps reduce the DSE time by a factor of a thousand, making them ex-
tremely useful for exploring the design space of the parent application. Heroux,
et al. in [10] provide a verification and validation (V&V) methodology for assess-
ing the ability of the mini-app to effectively represent the performance of their
parent application. The authors use the difference between mini-app and parent
app performance as their validation metric and compare it against a threshold.
This approach requires equal number of samples for both the parent app and
the mini-app. Since samples for the parent app are typically more expensive to
obtain, it can be a limiting factor in extensive validation studies over a large
design space. In our proposed approach, constructing an MFS requires much
fewer samples of parent app than of the mini-app, thus considerably reducing
the computational budget of conducting performance validation.

Mini-apps are used as a tool to evaluate optimization methods to improve
the performance of the parent application. But improving the performance of



the mini-app does not guarantee the same for the parent app, making it impor-
tant to know how representative these mini-apps are of their parent app [13].
For example, in [13] the authors seek to improve the performance of the appli-
cation on new and future systems using mini-apps. Although the optimizations
applied improve the mini-app performance, the impact on actual application
performance is not clear. In our work, an MFS for the parent application, built
using high-fidelity application performance samples and lower-fidelity mini-app
performance samples, can help us draw a relationship between the performance
behavior of the two applications.

Several frameworks have been proposed to realize multi-fidelity modeling in
various science and engineering domains [12,17,25]. In [17], a Bayesian framework
has been applied to predict the data of nuclear radiation based on simulations.
A variable fidelity optimization framework has been demonstrated for the design
of engine piston [23]. In [25], a deterministic framework has been proposed to
predict the strength of composite laminate based on finite element simulations.
Large number of application of MFS to mechanical systems can be found in
[12], which reports that the MFS reduces computational cost drastically while
enabling desirable prediction accuracy. The MFS has also been adopted as a
powerful tool for uncertainty propagation [21].

Various MFS frameworks have been proposed for different engineering ap-
plications. For example, the Bayesian MFS based on a scale factor has been
applied to design buildings [11] and flapping flight [26]. The Bayesian MFS in-
corporating discrepancy function has been proposed [17, 22] as a popular MFS
framework for various applications. This Bayesian framework is equivalent to the
co-Kriging surrogate [20] with no prior information. Balabanov et al. [4] used
a sequential deterministic MFS based on the discrepancy function to combine
finite element simulation with different resolutions. Zhang et al. [24,25] proposed
a simultaneous deterministic MFS based on the discrepancy function to combine
experimental strength and finite element simulation for composite laminate. We
can apply this methodology in our HPC community to save computational cost
of parent application.

Sampling schemes for multi-fidelity models have been studied correspond-
ingly. HF samples are usually a subset of LF samples. One representative all-
at-once sampling strategy is the nested design sampling [15]. First, LF samples
are generated using Latin Hypercube Sampling (LHS). Then the HF samples are
generated by maximizing the minimum distance between all existing LF samples.
Huang et al. [14] proposed a sequential sampling scheme for design optimization
using Bayesian MFS. Either LF or HF samples are generated iteratively for de-
sign optimization. In our approach, we used Full Factorial Design (FFD) [8] for
sampling as it is convenient for parametric study.

In this paper, we leverage many of the MFS methods developed in other
scientific domains and adapt and apply them to the HPC domain to reduce the
computational cost of validation of representative apps used in the co-design
process.



Fig. 1. Hierarchy of the CMT models

3 Application and Architecture Models

In this section, we give an overview of the parent application under study (CMT-
nek), its representative mini-app (CMT-bone) and skeleton app (CMT-bone-
BE); and a BE simulation approach that we use for performance modeling and
simulation. The relationships among their corresponding models are shown in
Fig. 1. The parent app, CMT-nek, represents a high-fidelity (HF) model, whereas
CMT-bone (a mini-app) and CMT-bone-BE (a skeleton app) are low-fidelity
(LF) models, as compared to CMT-nek. BE simulation is a modeling and sim-
ulation of CMT-bone-BE. Thus, BE simulation is an even lower fidelity model
than CMT-bone-BE and CMT-bone.

In this study, our objective is to first perform validation and uncertainty
estimation of the BE simulation results against test samples of CMT-bone-BE
(details in Section 5). Then a multi-fidelity surrogate model (MFS) is developed
using mostly samples from the low-fidelity BE simulation and a few high-fidelity
CMT-nek samples. The MFS model is then used to predict CMT-nek results
(Section 6, case study 1). This experiment is repeated between BE simulation
(LF) with CMT-bone (now being a HF, as compared to BE simulation) in case
study 2, followed by CMT-nek (HF) and CMT-bone (LF) for case study 3.

3.1 CMT-nek

CMT-nek [1] is being developed at the PSAAP-II Center for Compressible Mul-
tiphase Turbulence (CCMT) at University of Florida to perform simulation of
instabilities, turbulence, and mixing in particulate-laden flows under conditions
of extreme pressure and temperature [1]. CMT has applications in many envi-
ronmental, industrial, and national defense and security areas. CMT-nek is being
developed from a production release of petascale code Nek5000 [2], a Gordon Bell



prize winning open-source software for simulating unsteady incompressible fluid
flow with thermal and passive scalar transport. It is a highly scalable code with
strong scaling to over a million MPI ranks on ALCF BG/Q Mira. CMT-nek aims
to take advantage of this sustained performance by inheriting the MPI strategies
used in Nek5000; and by hooking into the Nek5000 repository, leveraging any
changes and optimizations made to Nek5000.

3.2 CMT-bone and CMT-bone-BE

CMT-bone is a mini-app that encapsulates the key data structures and compute
and communication kernels of CMT-nek. While retaining the workflow of CMT-
nek, CMT-bone simplifies the number of variables defined and allocated and also
the number of computation and communication operations performed at each
time step in the simulation. The authors in [5,18] have validated mini-app CMT-
bone with its parent app CMT-nek and found that the key compute kernels are
well represented by the proxy application.

CMT-bone-BE is a skeleton app of CMT-nek created to support rapid al-
gorithmic design-space exploration. It models the computation that happens
within every simulation timestep to calculate the partial derivative and exchange
data between nearby spectral element meshes. CMT-bone-BE ignores the initial
problem setup including mesh generation. Mesh generation operations can be
abstracted and replaced with a computation model in BE.

3.3 Behavioral Emulation (BE) Simulation

Behavioral Emulation (BE) is a coarse-grained modeling and simulation ap-
proach that aims to provide timely, flexible, and scalable estimates of application
performance on existing and future system architectures. In BE, the complex-
ity of large-scale system simulation is handled by simultaneously dividing the
simulation into different levels of system abstraction (e.g., device, node, rack,
system) and abstracting the behavior of the components at each of these levels.
The coarse-grained component models mimic or emulate the observed execution
behavior of the component instead of its cycle-accurate operation. There are two
basic types of BE models - application BE objects (AppBEOs) and architecture
BE objects (ArchBEOs).

BE simulations are used to predict the execution time of CMT-bone-BE and
have computational cost less than that of CMT-bone-BE (and much less than
that of CMT-nek and CMT-bone). In our study, BE simulation results are used
to produce the LF data points which are used to construct MFS models to predict
the execution time of CMT-nek and CMT-bone, using very few data points from
these two applications, thus reducing the overall computational budget of the
DSE process.



4 Multi-fidelity Surrogates

In engineering applications, it is common to have multiple models with different
fidelities for solving the same problem such as finite element simulations with
different grid resolutions, numerical simulations, and physical experiments. A
high-fidelity model (HFM) represents the physical phenomenon more accurately
than the low-fidelity model (LFM) but it is often very expensive. An MFS based
approach uses both high-fidelity and low-fidelity datasets to approximate the
HFM in the design space. An effective MFS is expected to make accurate pre-
diction with limited budget for sampling. Fernández-Godino et al. [12] reviewed
recent developments of MFS especially on effectiveness of applying MFS to prac-
tical design. Peherstorfer et al. [21] summarized the technical details of MFS for
inference and uncertainty propagation.

MFS translates LFM against a few HF samples using an algebraic function.
Typical MFS frameworks include two major components: (1) a model to define
the relation between LFM and HFM, and (2) the scheme to find parameters of
the MFS and associated uncertainty of prediction. The LFM could be translated
to HFM through (1) a constant scale factor, or (2) scaling up the LFM and adding
to a discrepancy function. After determining the form of algebraic function,
the MFS could be developed either using Bayesian inference through Gaussian
process, or using a least-square regression minimizing error between fitted model
and data.

In this work, we investigate the feasibility of MFS to quantify and mitigate
the difference between high-fidelity parent applications (e.g., CMT-nek) and low-
fidelity simulations (e.g., BE simulation) in the area of co-design of large-scale
system. The least-squares MFS (LS-MFS) [24] was selected for this feasibility
study while balancing complexity and predictive capability.

f̂H(x) = ρf̂L(x) + δ̂(x) (1)

The LS-MFS is built with two surrogates, f̂L(x), a polynomial response sur-

face (PRS) fitted to low-fidelity data, and δ̂(x), the fitted discrepancy data

(equation 1). The scale factor ρ and discrepancy function δ̂(x) are obtained to
minimize prediction error at the high-fidelity samples according to equations 2
and 3. (xH ,yH) denotes the high-fidelity dataset containing n samples.

min
ρ,δ̂(x)

: (δ̂(xH)− dH)T (δ̂(xH)− dH) (2)

dH = ρf̂L(xH)− yH (3)

The multi-fidelity surrogate using a single linear regression is obtained from
equations (4-7). Y is the vector of high-fidelity samples, X is the augmented
design matrix, B is the vector of unknown coefficients and e is the vector for
residual errors. Xi(x) denotes the ith monomial/basis, and bi is the coefficient

of Xi(x). The obtained discrepancy function δ̂(x) is shown in equation 8.
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B = (XTX)−1XTY (7)

δ̂(x) =

p∑
i=1

biXi(x) (8)

The LS-MFS scales up the LFM and adds a polynomial function δ̂(x) to
match a few high-fidelity samples. The scale factor ρ is critical for prediction.
Negative or extremely large values of ρ indicates a prediction with large error,
which is likely to be associated with undesirable LFMs, inappropriate surrogate
forms, or inadequate samples. δ̂(x) is supposed to be a low-order polynomial
function while assuming the the LFM has a trend similar to HFM. In our study,
we adopted a constant δ̂(x) for less than 10 HF samples and a linear polynomial

function as δ̂(x) for the rest. We approximated the execution time in logarithmic
coordinate to account for the order-of-magnitude variation of execution time.
f̂L(x) was developed using a quartic PRS.

5 Developing MFS Model

Although various performance metrics can be studied for performance simula-
tion such as energy consumption and communication times between the pro-
cessors, the metric of interest in this paper is the total execution time for run-
ning a typical computational fluid dynamics analysis using CMT-nek (HFM),
CMT-bone (HFM), CMT-bone BE (LFM), and BE simulation (LFM). All the
benchmarking of the CMT models is performed on the Vulcan HPC platform
from Lawrence Livermore National Laboratory (LLNL) [3]. Vulcan is a 24-rack
IBM Blue Gene/Q system based on POWER architecture that consists of 24,576
nodes and 400TB of compute memory. It is important to ensure that the HF
and LF data are obtained from the same hardware. The accuracy of the MFS
model reflects how representative the LF and HF are of each other.
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Fig. 2. Design of experiments for CMT-nek, CMT-bone, and BE simulations

5.1 Design Space

For CMT-nek, the three main application parameters of concern are Element
Size (ES), Elements per Processor (EPP) and Number of Processors (NP). Ap-
plication performance can be affected by changing any one of these parameters.
We chose 125 experimental points based on five-level full factorial design.“Five-
level” denotes the 5 points/grids selected along each application parameter with
similar space, as shown in Fig. 2. The design of experiment is ES={5,9,13,17,21},
EPP={8,32,64,128,256} and NP={16,256,2048,16384,131072}. The experimen-
tal runs require up to 131,072 processors, 34 million elements and 311 billion
computational grid points.

As the model fidelity increases so does the cost of obtaining a test sample.
We obtained data for CMT-bone-BE and BE simulation for the entire design
space (125 data points); but for CMT-nek and CMT-bone, data was judiciously
obtained from a subset of the design space. For the runs from LFM and HFM,
we made 22 runs from CMT-nek (HFM), 67 runs from CMT-bone, and 125 runs
for both LFMs (CMT-bone-BE and BE simulation).

5.2 Validations of BE simulation results

Recall from Fig. 1 that the order of fidelity is as follows: parent app CMT-nek
(highest), mini-app CMT-bone, skeleton app CMT-bone-BE, and BE simulation
(lowest). In the next section, we will use the BE-simulation results (LF) to predict
the performance of CMT-nek (HF parent app). Thus, first it is important to
evaluate the accuracy of the BE simulation. To do so, in this section, we will
first validate the accuracy of BE simulation against skeleton app CMT-bone-BE.



We then evaluate the accuracy of CMT-bone-BE by validating its results against
those of mini-app CMT-bone.

BE simulation vs. CMT-bone-BE. Validation is the process of comparing
the BE simulation results to its respective benchmarking result using CMT-
bone-BE. In this study, we have validated the simulation results for the entire
design space on Vulcan, one of the largest high-performance computing system
available at the Lawrence Livermore National Lab. The validation of the design
space covered all the calibration points. But to further evaluate the accuracy of
the simulator, true validation was performed by validating points that are not
present in the calibration set. Polynomial interpolation was used in the simulator
to predict the execution time of the application at these validation points. The
obtained simulation results are then validated by running the actual CMT-bone-
BE application on Vulcan for those validation points.

Fig. 3. Validation of BE simulation against CMT-bone-BE

The validation results of BE simulation against CMT-bone-BE are shown in
Fig. 3 where the blue points represent the predicted CMT-bone-BE time using
BE simulation and the red points are the validation points obtained by running
the application (CMT-bone-BE) on Vulcan. We validated the simulations up
to 128k NP on Vulcan and predicted the time for 256k NP and 512k NP. The
average percentage error between BE simulation and CMT-bone-BE is 4%, thus
demonstrating the accuracy of the BE simulator.

CMT-bone-BE vs. CMT-bone. The validation of the skeleton app CMT-
bone-BE against mini-app CMT-bone (Fig. 4a and 4b, respectively) is done
through comparing their trends under the same experimental setup described
above. CMT-bone-BE being the skeleton app, takes less time to execute than
that of the mini-app, CMT-bone, and hence the range of their execution time
varies. Therefore, to make it easier to compare the trend, the execution time
is plotted on a color scale with red being the lowest in the range and blue



(a)

(b)

Fig. 4. Comparing CMT-bone mini-app and CMT-bone-BE skeleton app trends for
various parameter values

being highest in the range as shown in Fig. 4. The step-wise increase shows
that the predicted execution time for CMT-bone-BE and CMT-bone increases
monotonically with ES and EPP and does not change appreciably with NP, and
the color scale on the graphs verify the similarity in trend between CMT-bone-
BE and CMT-bone.

6 Evaluating MFS Predictions — Three Case Studies

Three case studies were used to demonstrate the multi-fidelity surrogate (MFS)
approach in which a surrogate model, based mostly on low-fidelity (LF) sam-



ples assisted with only a few high-fidelity (HF) samples, is used to predict the
performance of a high-fidelity (HF).

– Case 1: Multi-fidelity model based mostly on BE simulation (LF) and few
CMT-nek (HF parent app) data points to predict the performance of CMT-
nek (HF)

– Case 2: Multi-fidelity model based mostly on BE simulation (LF) and few
CMT-bone (relatively HF mini-app) data points to predict the performance
of CMT-bone (HF)

– Case 3: Multi-fidelity model based mostly on CMT-bone (relatively LF mini-
app) and few CMT-nek (HF) data points to predict the performance of
CMT-nek (HF)

The setup was same in all three case studies. A subset of high-fidelity data
was selected as the validation/test runs to evaluate predictions while the others
were used as training runs to train LS-MFS (least square MFS). The number
of samples increased gradually from the remaining runs (which excludes the
validation runs) to investigate the effect of sampling plan. For each number of
samples, random selection was repeated 20 times to account for the effect of
sampling plan. The overall difference was measured using relative root-mean-
square error (R-RMSE) between the LS-MFS predictions and the validation
runs. The relative maximum difference (R-MD) at the validation runs based on
the repeated samples was also provided to understand individual prediction. In
this paper, we study LS-MFS using polynomial response surface as it is robust
with noise effect. Other frameworks of multi-fidelity surrogates are also available
such as co-Kriging. The comparison between different multi-fidelity surrogates
is beyond the scope of this paper.

Table 1. Predicting execution times of CMT models based on typical set of 12 samples
and evaluating the prediction using R-RMSE (%)

Case 1: Case 2: Case 3:
CMT-nek
prediction from
BE simulation

CMT-bone
prediction from
BE simulation

CMT-nek
prediction from
CMT-bone

Number of
validation runs

10 20 10

LS-MFS 4.49% 5.40% 7.34%

f̂L(x) 66.85% 61.26% 18.65%

Linear fit to
(xH ,yH)

131.23% 1901.91% 131.23%

Residual errors

of f̂L(x)
0.77% 0.77% 1.05%

Residual errors
of the linear fit
to (xH ,yH)

18.40% 50.71% 18.40%



6.1 Case study 1: CMT-nek predictions from BE simulations

22 runs of CMT-nek are obtained as shown in Fig. 2. 10 runs (out of 22) were
selected randomly and fixed as the validation runs. We first examined LS-MFS
to approximate CMT-nek (HF model) runs using a typical set of 12 samples
as shown in the Case 1 column of Table 1. The R-RMSE of LS-MFS is 4.49%
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Fig. 5. Difference between CMT-nek validation runs and multi-fidelity predictions
based on BE simulation



using BE simulation (LF model) at 10 validation runs. The linear fit using only
HF CMT-nek runs was also developed as a comparison with the R-RMSE to
be 131.23% at the validation runs. The R-RMSE between original BE simula-
tion and CMT-nek (f̂L(x)) at all the 12 points, without translation, is 66.85%.
As mentioned before, BE simulation mimics CMT-bone-BE and not CMT-nek.
Since CMT-bone-BE is just a skeleton app with very few computational ker-
nels, the percentage difference is high. The LS-MFS was much more accurate
than either the f̂L(x) or the linear fit to (xH ,yH), demonstrating its promise
to compensate the difference between high-fidelity and low-fidelity models.

Next, we investigated the effect of the sampling plan on prediction accuracy.
The LS-MFS predictions for CMT-nek runs with increasing number of samples
were summarized in Fig. 5a. The LS-MFS was unstable using only 2 CMT-nek
samples due to over-fitting and became more accurate with increasing CMT-nek
samples. The R-RMSE was less than 10% with more than 9 CMT-nek samples
and ended with 4.49%. The R-MD was less than 20% with more than 9 CMT-nek
samples and ended with 7% as seen in Fig. 5b. The order of δ̂(x) was changed
from constant to linear for more than 9 CMT-nek samples which was critical
for the accuracy of LS-MFS. We specified the order of δ̂(x) for simplicity in this
feasibility study. The performance of LS-MFS could be improved by choosing
appropriate δ̂(x). Another observation is the large variation of R-RMSE while
repeating HF samples. The design of experiments for HF samples affected LS-
MFS noticeably. The evaluation of LS-MFS for CMT-nek is based on up to 12
samples and may suffer large uncertainty due to the scarce runs.

6.2 Case study 2: CMT-bone predictions from BE simulations

20 runs (out of 67) were selected randomly and fixed as the validation runs. We
performed LS-MFS for CMT-bone (HF model in this case) based on 20 valida-
tion runs and up to 47 samples. Again, LS-MFS was most accurate comparing
to f̂L(x) and the linear fit to only (xH ,yH) as shown in Case 2 column of Ta-
ble 1. The LS-MFS predictions were much closer to HFM than the original BE
simulations.

Once again, we investigate the effect of the sampling plan on prediction
accuracy. The R-RMSE in Fig. 6a reduced with increasing CMT-bone samples
and ended with 5.4%. The R-MD in Fig. 6b oscillated with scarce CMT-bone
runs at the beginning and stabilized around 10%. Both R-RMSE and R-MD
reduced noticeably with the first few samples and stabilized to less than 10%
thus proving to be a promising approach.

6.3 Case study 3: CMT-nek predictions from CMT-bone

In the final case study, the LS-MFS was developed to predict the high-fidelity
parent app (CMT-nek) from its low-fidelity mini-app (CMT-bone). This helps in
quantitative validation of the mini-app. The setup was same as in case study 1,
where CMT-nek was the HF model. From Case 3 column of Table 1, we see that
LS-MFS provides the best fit compared to linear fit. The LS-MFS had less-than
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Fig. 6. Difference between CMT-bone validation runs and multi-fidelity predictions
based on BE simulation

10% R-RMSE in Fig. 7a. It is worth noting the significant jump between 9 and
10 samples while changing the order of δ̂(x) in Fig. 7a and 7b. CMT-bone was

close to CMT-nek and a different scheme might be preferred to determine δ̂(x).

A key observation between case study 1 and 3 is that although the CMT-
bone samples were much closer to the CMT-nek samples, the MFS predictions
of CMT-nek (HF) from BE simulations (LF) were more accurate than the MFS
predictions from CMT-bone (LF) as shown in Table 1. Fitting CMT-bone was
more challenging considering the scarce samples (67 runs). BE simulations, on
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Fig. 7. Difference between CMT-nek validation runs and multi-fidelity predictions
based on CMT-bone

the other hand, had all the 125 samples in the design space and thus, lead
to better MFS predictions. This is supported by residual errors of f̂L(x) from
Table 1.

In all three cases, the error in prediction ended less than 10%; thus, prov-
ing it to be a valuable approach to use for reducing computational budget in
the process of co-design. The range of scale factor (ρ) for the three cases are
summarized in Table 2. The scale factors are around 1 which indicates that the



Table 2. Range of the scale factors for LS-MFS

Case 1 Case 2 Case 3

Minimum ρ 0.8 0.91 0.5

Maximum ρ 0.98 1.08 1.3

LF and HF have similar trend. The major difference between HF and LF are
well-compensated by the constant/linear discrepancy function.

7 Conclusions

Due to high computational cost, validation samples from HFM are usually ob-
tained at small scale. But with MFS model, we were able to perform quantita-
tive validation at a reduced computational budget. In this paper, we studied the
least-square MFS (LS-MFS) using polynomial response surface as it is robust
with noise effect. For future work, different multi-fidelity surrogates can be com-
pared. Our ultimate goal is to predict the performance for exascale computation
platform which is essentially long-range extrapolation far from the validation
samples. In the future, we will investigate the capability of LS-MFS for long-
range extrapolation which suffers large uncertainty. We also noticed the LS-MFS
predictions were sensitive with the high-fidelity samples. Effective design of ex-
periments for validation runs are expected to improve the accuracy of LS-MFS,
which is also a valuable research direction.
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