
A survey of application memory usage on a
national supercomputer: an analysis of memory

requirements on ARCHER

Andy Turner1 and Simon McIntosh-Smith2

1 EPCC, University of Edinburgh, EH9 3JZ, UK
a.turner@epcc.ed.ac.uk

2 Department of Computer Science, University of Bristol, BS8 1UB, UK
S.McIntosh-Smith@bristol.ac.uk

Abstract. In this short paper we set out to provide a set of modern
data on the actual memory per core and memory per node requirements
of the most heavily used applications on a contemporary, national-scale
supercomputer. This report is based on data from all jobs run on the UK
national supercomputing service, ARCHER, a 118,000 core Cray XC30,
in the 1 year period from 1st July 2016 to 30th June 2017 inclusive. Our
analysis shows that 80% of all usage on ARCHER has a maximum mem-
ory use of 1 GiB/core or less (24 GiB/node or less) and that there is a
trend to larger memory use as job size increases. Analysis of memory use
by software application type reveals differences in memory use between
periodic electronic structure, atomistic N-body, grid-based climate mod-
elling, and grid-based CFD applications. We present an analysis of these
differences, and suggest further analysis and work in this area. Finally,
we discuss the implications of these results for the design of future HPC
systems, in particular the applicability of high bandwidth memory type
technologies.

Keywords: HPC, Memory, Profiling

1 Introduction

Memory hierarchies in supercomputer systems are becoming increasingly com-
plex and diverse. A recent trend has been to add a new kind of high-performance
memory but with limited capacity, to high-end HPC-optimised processors. Re-
cent examples include the MCDRAM of Intel’s Knights Landing Xeon Phi, and
the HBM of NVIDIA’s Pascal P100 GPUs. These memories tend to provide 500-
600 GBytes/s of STREAM bandwidth, but to only about 16 GiB of capacity
per compute node.

To establish whether these fast but limited capacity memories are applicable
to mainstream HPC services, we need to revisit and update our data on the typ-
ical memory requirements of modern codes. This is an area where conventional
wisdom abounds, yet it is likely to be out of date. The underpinnings of this
conventional wisdom were recently reviewed by Zivanovic et al. [1]. One of the



2

key findings from this previous study is that the amount of memory provisioned
on large HPC systems is a consequence of a desired high performance for HPL,
where larger memory is required to achieve good scores, rather than the actual
memory requirements of real HPC applications.

There are many factors which affect the memory capacity requirements of any
scientific code, and these factors are likely to have been changing rapidly in recent
years. For example, the ratio of network performance to node-level performance
tends to influence how much work each node needs to perform, and as the node-
level performance tends to grow faster than the network-level performance, the
trend is for each node to be given more work, typically implying larger memory
requirements. Because of these changes, we cannot rely on conventional wisdom,
nor even older results, when estimating future memory capacity requirements.
Instead, we need up-to-date, good quality data with which to reason and then
to inform our predictions.

In this study we have used ARCHER, the UK’s national supercomputer, as
an example of a reasonably high-end supercomputer. ARCHER reached #19 in
the Top500 upon its launch in 2013. It is a 4,920 node Cray XC30, and consists
of over 118,000 Intel Ivy Bridge cores, with two 2.7 GHz, 12-core E5-2697 v2
CPUs per node3. 4,544 of the 4,920 nodes have 64 GiB per node (2.66 GiB per
core), while the remaining 376 ‘high memory’ nodes have 128 GiB each (5.32
GiB per core).

We set out to analyse all of the codes running on ARCHER for their current
memory usage, in the hope that this will inform whether future processors ex-
ploiting smaller but faster HBM-like memory technologies would be relevant to
ARCHER-class national services. Zivanovic et al. [1] also studied the memory
footprints of real HPC applications on a system of similar scale to ARCHER.
Their approach differs from ours in that they used profiling tools to instrument
a particular subset of applications using a standard benchmark set (PRACE
UEABS [2]). In contrast, we are sampling the memory usage of every job run on
ARCHER in the analysis period. Thus our data should complement that from
Zivanovic’s study.

2 Data collection and analysis

We use Cray Resource Usage Reporting (RUR) [3] to collect various statistics
from all jobs running on ARCHER. This includes the maximum process memory
used across all parallel processes in a single job. It is this data that provides
the basis of the analysis in this paper. Unfortunately, RUR does not include
details on the number of processes per node, executable name, user ID and
project ID which allow the memory use to be analysed in terms of application
used and research area (for example). Tying the RUR data to these additional
properties of jobs on ARCHER requires importing multiple data feeds into our
service management and reporting database framework, SAFE [4]. All of the

3 https://www.archer.ac.uk/about-archer/hardware/



3

data reported in this paper rely on multiple data feeds linked together through
SAFE. Applications are identified using a library of regexp against executable
name that has been built up over the ARCHER service with help from the user
community. With this approach we are currently able to identify around 75% of
all usage on ARCHER.

Memory usage numbers below are presented as maximum memory use in
GiB/node. As there are 24 cores per node on ARCHER, a maximum memory
use of 24 GiB/node corresponds (if memory use is homogeneous) to 1 GiB/core.
Note that, as described above, the actual value measured on the system is max-
imum memory use across all parallel processes running in a single job. The
measured value has then been converted to GiB/node by multiplying by the
number of processes used per node in the job. This is a reasonable initial model
as the majority of parallel applications on ARCHER employ a symmetric par-
allel model, where the amount of memory used per process is similar across all
processes. However, if an application has asymmetric memory use across differ-
ent parallel processes, this will show up as an overestimation of the maximum
memory use per node. Indeed, we discuss an example of exactly this effect in the
section on grid-based climate modelling applications below.

We have analysed memory usage data from Cray RUR for all applications
run on ARCHER in the 1 year period from 1st July 2016 to 30th June 2017
inclusive.

3 Application memory usage

First we look at overall memory usage for all jobs on ARCHER in the period,
and then go on to look at the data for the top 10 applications used on the
service (these 10 applications cover over 50% of the usage). We have broken the
applications down into four broad types to facilitate this initial analysis:

– Periodic electronic structure: VASP, CASTEP, CP2K
– N-body models: GROMACS, LAMMPS, NAMD
– Grid-based climate modelling: Met Office UM, MITgcm
– Grid-based computational fluid dynamics: SBLI, OpenFOAM

Due to space restrictions we are not able to include memory usage figures for
all applications listed above. Instead we plot the data that best represents the
trends for that application class, or that we use to illustrate a particular point.
An expanded version of this paper that includes plots for all the applications
listed above (along with the numerical data that was used to produce the plots)
can be found online [5].

3.1 Overall memory use

Table 1 shows a breakdown by memory use for all jobs on ARCHER in the 12
month analysis period. Additional columns show the usage for Small jobs (32



4

nodes or less) and Large jobs (more than 32 nodes). Just under 80% of all usage
in the period uses a maximum of 24 GiB/node (1 GiB/core). Memory usage
for larger jobs is generally higher, with large jobs showing only 70% of usage
at a maximum of 24 GiB/node, and over 25% of usage in the range [24,96)
GiB/node. These results generally echo the results from Zivanovic et al. [1] with
the exception that we do not observe large memory requirements for smaller jobs,
as seen in their application benchmarks. This could be due to the benchmarks
chosen in the previous study not being representative of the usage pattern of
those applications on ARCHER (see, for example, the results for CP2K below
which is also one of the applications in the PRACE UEABS).

Table 1. % usage breakdown by maximum memory use per node for all jobs run on
ARCHER during the analysis period. (Small: 32 nodes or less; Large: more than 32
nodes.)

Max. memory use Usage
(GiB/node) All Small Large

(0,12) 61.0% 69.5% 53.0%
[12,24) 18.6% 19.4% 16.9%
[24,48) 11.5% 7.7% 14.8%
[48,96) 6.9% 3.0% 11.2%
[96,128) 2.0% 0.4% 4.2%

Figure 1 shows a heatmap of the usage broken down by job size versus overall
memory use in GiB/node (extrapolated from the maximum process memory
usage). The trend for higher maximum memory use as job size increases can be
seen as a diagonal feature running from top left to bottom right.

Fig. 1. Usage heatmap of maximum memory versus job size for all jobs in the period.



5

3.2 Periodic electronic structure (PES) applications

The top three of the top ten most heavily used applications on ARCHER are
PES modelling applications: VASP, CASTEP, and CP2K. Although the imple-
mentation of the theory differs across the three applications, the algorithms used
are similar, involving dense linear algebra and spectral methods (generally small
Fourier transforms). Table 2 shows the breakdown of usage by maximum memory
use for these three applications combined.

Table 2. % usage breakdown by maximum memory use per node for VASP, CASTEP
and CP2K jobs run on ARCHER during the analysis period. (Small: 32 nodes or less;
Large: more than 32 nodes.)

Max. memory use Usage
(GiB/node) All Small Large

(0,12) 65.4% 68.6% 55.4%
[12,24) 21.4% 20.0% 25.7%
[24,48) 9.4% 8.5% 12.1%
[48,96) 3.7% 2.7% 6.7%
[96,128) 0.1% 0.1% 0.1%

Comparing to the overall distribution (Table 1), we can see that this distribu-
tion is very similar, with a large majority of usage at 24 GiB/node (1 GiB/core)
or less. This is unsurprising, as PES applications make up such a large part of
the use of ARCHER (almost 30% from just these three applications, and over
40% if all similar applications are included). Only 13% of usage needs more than
24 GiB/node, and this only increases to 19% for larger jobs. The heatmap of
usage broken down by maximum memory use and job size for CP2K is shown
in Figure 2. Heatmaps for VASP and CASTEP show the same trends as that
for CP2K. When compared to the overall heatmap (Figure 1) CP2K does not
mirror the trend that larger job sizes lead to increased memory use per node. For
PES applications, the larger jobs have similar memory use per node as smaller
jobs.

It is interesting to compare our results for CP2K (Figure 2) with those re-
ported in Zivanovic et al. [1]. In particular, they report that the small CP2K
benchmark (Test Case A: bulk water) has a memory requirement of approx. 6
GiB/core running on a single node (16 cores), whereas on ARCHER, small CP2K
jobs generally have maximum memory requirements of less than 0.5 GiB/core.
This would suggest that, generally, the size of problem people are using these
low core-count jobs to study on ARCHER is substantially smaller than the small
CP2K benchmark in the PRACE UEABS.

3.3 N -body atomistic simulation applications

The N -body atomistic modelling applications, GROMACS, LAMMPS, and NAMD,
are important applications in the top ten on ARCHER. Two of these, GRO-



6

Fig. 2. Usage heatmap of maximum memory versus job size for CP2K jobs in the
period.

MACS and NAMD, are almost exclusively used for biomolecular simulations,
while LAMMPS is used more broadly across a number of research areas. All
three applications use very similar algorithms, with pairwise evaluation of short-
range forces and energies, and Fourier transforms for long range electrostatic
forces. The parallelisation strategies differ across the applications. Table 3 shows
the breakdown of usage by maximum memory use for these three applications
combined.

Table 3. % usage breakdown by maximum memory use per node for GROMACS,
LAMMPS and NAMD jobs run on ARCHER during the analysis period. (Small: 32
nodes or less; Large: more than 32 nodes.)

Max. memory use Usage
(GiB/node) All Small Large

(0,12) 91.6% 96.6% 80.7%
[12,24) 2.7% 3.1% 2.1%
[24,48) 0.5% 0.4% 0.6%
[48,96) 4.8% 0.0% 15.5%
[96,128) 0.1% 0.0% 0.1%

These applications generally have the lowest memory demands on ARCHER,
with over 90% of usage requiring less than 12 GiB/node (0.5 GiB/core). Even for
larger jobs, only 20% of jobs require more than 12 GiB/node. This ties in with
the results from NAMD and GROMACS in Zivanovic et al. [1]. Figure 3 shows
the heatmap of memory usage versus job size for NAMD. Heatmaps for the other
applications show similar trends. Each of these applications have a class of large
calculations that have higher memory demands (48-96 GiB/node, around four



7

times higher than the majority of jobs). This is particularly prominent in the
NAMD heatmap (Figure 3). We plan to contact users to understand what this
use case is and why it has such a large memory requirement. It is worth noting
that these jobs with a larger memory requirement only represent 0.5% of the
total node hours used on ARCHER in the period.

Fig. 3. Usage heatmap of maximum memory versus job size for NAMD jobs in the
period.

3.4 Grid-based climate modelling applications

Both of the grid-based climate modelling applications analysed (Met Office UM
and MITgcm) show a very different profile from the other application classes
studied in this paper. As shown in Table 4, a much higher proportion of jobs use
large amounts of memory, and that use of higher memory is almost always for
the largest jobs. The heatmap for the MET Office UM (Figure 4) clearly reveals
a very distinct split, with two classes of job existing: small jobs (less than 32
nodes) with low memory requirements (24 GiB/node or less), and very large
jobs (above 128 nodes) with very large memory requirements (96-128 GiB/node
for Met Office UM). MITgcm shows a similar usage peak for large jobs at 24-
48 GiB/node for 256-512 node jobs. We have performed initial investigations
into this phenomenon for the Met Office UM jobs and found that it is due to
asymmetrical memory use across parallel processes in the jobs. These jobs have a
small number of parallel processes that have much higher memory requirements.
These high-memory processes work as asynchronous I/O servers that write data
to the file system while other processes continue the computational work.

3.5 Grid-based computational fluid dynamics (CFD) applications

Finally, we look at the grid-based CFD applications. Two applications appear in
the top ten on ARCHER: SBLI and OpenFOAM. Table 5 reveals that they do not



8

Table 4. % usage breakdown by maximum memory use per node for Met Office UM
and MITgcm jobs run on ARCHER during the analysis period. (Small: 32 nodes or
less; Large: more than 32 nodes.)

Max. memory use Usage
(GiB/node) All Small Large

(0,12) 53.5% 66.4% 18.8%
[12,24) 25.0% 33.1% 3.3%
[24,48) 6.0% 0.2% 21.5%
[48,96) 0.2% 0.2% 0.0%
[96,128) 15.3% 0.0% 56.4%

Fig. 4. Usage heatmap of maximum memory versus job size for Met Office UM jobs in
the period.

follow the same memory usage trend as the climate modelling applications, even
though both classes of application use grid-based methods and both have the
same drive to higher resolution and, generally, larger jobs. The usage heatmap for
SBLI (Figure 5) shows that the large jobs can have a larger memory requirement
(24-96 GiB/node), but this is not always required (as was seen for the climate
applications), as a reasonable proportion of the large jobs also have low memory
requirement (up to 12 GiB/node). We plan to contact SBLI users to understand
the differences between the jobs that have large memory requirements and those
having low memory requirements. The OpenFOAM data show no clear link
between increasing job size and increased memory requirements, with 94% of
usage requiring less than 24 GiB/node.

4 Conclusions and future work

Our initial analysis of memory use of applications running on ARCHER has
shown that a large amount of use (80%) is under 24 GiB/node (1 GiB/core),
with a significant fraction (60%) using less than 12 GiB/node (0.5 GiB/core).



9

Table 5. % usage breakdown by maximum memory use per node for SBLI and Open-
FOAM jobs run on ARCHER during the analysis period. (Small: 32 nodes or less;
Large: more than 32 nodes.)

Max. memory use Usage
(GiB/node) All Small Large

(0,12) 64.2% 71.8% 62.2%
[12,24) 14.8% 8.6% 16.4%
[24,48) 13.4% 5.6% 15.4%
[48,96) 7.7% 14.0% 6.0%
[96,128) 0.0% 0.0% 0.0%

Fig. 5. Usage heatmap of maximum memory versus job size for SBLI jobs in the period.

There seems to be a trend to increased memory requirements as jobs get larger,
although some of this increase may be due to asymmetric memory use across
processes. Another possible reason for this phenomenon is that larger jobs are
usually larger simulations, and so the memory requirement may generally be
larger. These results are generally in line with those reported for specific appli-
cations benchmarks in Zivanovic et al. [1], with the exception that we do not see
large memory requirements for small jobs as reported in their study.

We also illustrated one weakness in our current analysis, when memory use
between parallel processes is very asymmetric. As the analysis is based on max-
imum process memory use extrapolated to a per-node value, parallel processes
with very different memory use within the same application can produce mislead-
ing estimated memory use figures. We plan to refine our analysis methodology
to take this type of asymmetric memory use into account for future work.

Our analysis leads us to conclude that there is an opportunity for exploit-
ing emerging, high bandwidth memory technologies for most of the research on
ARCHER. Many applications from a broad range of research areas have per-
formance that is currently bound by memory bandwidth and would therefore
potentially see significant performance improvements from this type of tech-



10

nology. The data in this paper suggests that, even memory was as low as 0.5
GiB/core, two-thirds of the current workload on ARCHER would be in a posi-
tion to exploit this, without any software changes. Expanding to 1.0 GiB/core
would address nearly 80% of ARCHER’s current workload. Our results (and re-
sults from previous studies) suggest that a future ARCHER service could even
benefit from architectures where HBM-like technologies with limited capacity
replace main memory, rather than using a hybrid solution (such as the MC-
DRAM+DRAM seen on the Intel Xeon Phi). The reasoning here is that using
HBM technologies as a main memory replacement allows applications to access
the best performance without application code modifications whereas in the hy-
brid approach the only way to use the HBM without code modification is as an
additional, large cache level, which can limit the performance gains available [6].
Another option would be to use a combination of processors with high memory
bandwidth alongside processors with high memory capacity.

In addition to refining our analysis technique using this new data from
ARCHER, we need to work with the user community to understand the different
memory use classes for particular applications and research problems. This work
will help us make sure that future UK national supercomputing services provide
the best resource for researchers.

In future we plan to work with other HPC centres worldwide to understand
the variability in memory use profile across different services. We have already
opened discussions with other European and US HPC centres on this topic.

References

1. Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin, Jong-
pil Son, Sally A. Mckee, Paul M. Carpenter, Petar Radojkovi, and Eduard
Ayguad? Main Memory in HPC: Do We Need More or Could We Live with
Less?. ACM Trans. Archit. Code Optim. 14, 1, Article 3 (March 2017) DOI:
https://doi.org/10.1145/3023362

2. PRACE. 2013. Unified European Applications Benchmark Suite. http://www.prace-
ri.eu/ueabs/ (accessed 21 Sep 2017)

3. XC30 Series System Administration Guide (CLE 6.0.UP01) S-
2393https://pubs.cray.com/content/S-2393/CLE%206.0.UP01/xctm-series-system-
administration-guide-cle-60up01/resource-utilization-reporting (accessed 21 Sep
2017)

4. Stephen Booth, Analysis and reporting of Cray service
data using the SAFE. Cray User Group 2014 Proceedings.
https://cug.org/proceedings/cug2014 proceedings/includes/files/pap135.pdf
(accessed 21 Sep 2017)

5. ARCHER. 2017. Memory usage on the UK national supercom-
puter, ARCHER: analysis of all jobs and leading applications.
http://www.archer.ac.uk/documentation/white-papers/ (accessed 21 Sep 2017)

6. Milan Radulovic, Darko Zivanovic, Daniel Ruiz, Bronis R. de Supinski, Sally A.
McKee, Petar Radojkovi, and Eduard Ayguad? 2015. Another Trip to the Wall: How
Much Will Stacked DRAM Benefit HPC?. In Proceedings of the 2015 International
Symposium on Memory Systems (MEMSYS ’15). ACM, New York, NY, USA, 31-36.
DOI: http://dx.doi.org/10.1145/2818950.2818955


