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Abstract. As the US Department of Energy (DOE) invests in exascale comput-
ing, performance modeling of physics codes on CPUs remain a challenge in com-
putational co-design due to the complex design of processors including memory
hierarchies, instruction pipelining, and speculative execution. We present Analyt-
ical Memory Model (AMM), a model of cache hierarchies, embedded in the Per-
formance Prediction Toolkit (PPT) – a suite of discrete-event-simulation-based
co-design hardware and software models. AMM enables PPT to significantly im-
prove the quality of its runtime predictions of scientific codes.
AMM uses a computationally efficient, stochastic method to predict the reuse
distance profiles, where reuse distance is a hardware architecture-independent
measure of the patterns of virtual memory accesses. AMM relies on a stochas-
tic, static basic block-level analysis of reuse profiles measured from the memory
traces of applications on small instances. The analytical reuse profile is useful to
estimate the effective latency and throughput of memory access, which in turn
are used to predict the overall runtime of an application.
Our experimental results demonstrate the scalability of AMM, where we report
the error-rates of three benchmarks on two different hardware models.

Keywords: Performance modeling; Cache hierarchies; Reuse distance; Proba-
bilistic models; LLVM; Basic blocks;

1 Introduction

The US DOE’s exascale initiative demands a thousand-fold increase in supercomputing
performance to meet the national needs in science, energy, and security. The transition
to exascale computing poses hard challenges in the form of design of future architec-
tures. Moreover, confining to modulate either of the software or hardware is insufficient
to meet the design goals. Co-design helps to trade-off the hardware designs and code
development. Most of the research in co-design has been aimed at getting cycle accu-
rate simulations in exploring the design space. Recent developments encourage novel
performance modeling frameworks due to the black-box nature of the cycle accurate
simulators [3]. Especially, cycle accurate simulators are slow and hinder the factors that
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contribute to the design of processors. Apart from the speed/slowness, many of these
simulators are old while the modern processors are far more advanced than many of
those models. Furthermore, the validation of these simulators is not as exhaustive as it
should be, yet they are accepted in the research community. With that motivation, rapid
performance prediction of computational codes on potential hardware architectures is a
crucial requirement for pushing forward towards the exascale era.

In co-tuning the hardware and software parameters for physics codes, we introduce
a novel framework, Analytical Memory Model (AMM), to explore the design space.
AMM contains a compiler-driven static analysis of applications and a hardware-driven
performance model. The compiler-driven analysis identifies the basic blocks (contain
no loops and branches with a single entry and exit points) of a program, for which, an
off-line analysis calculates the exact probability of executing a basic block. The hard-
ware model is unique among the family of exascale co-design models with its capabil-
ity to scale while considering the hardware specific factors such as frequency, latency,
throughput, and cache. For the execution time, we consider the reuse distance [24] (the
number of unique memory references between two references to the same addresses)
and the number of CPU operations. We measure the total execution time of CPU oper-
ations using the pre-calculated instruction latencies.

In measuring the memory access time, we estimate a distribution of reuse distances
from the memory trace of an application at a smaller input size. We randomly sample
for each basic block and measure the conditional reuse distance profiles. These profiles
together with the probability of executing a basic block results in the overall reuse
profile of a program. The resultant reuse profiles help us estimate the availability of
data (conditional hit rates) for a processor through various cache hierarchies. With the
hit-rates, we measure the effective latency and throughput per memory operation. With
the latency and throughput at hand, we measure the total memory access time of a
program. The predicted runtime of an application is the sum of the time required for
CPU operations and the total memory access time.

We evaluate AMM on three benchmarks: STREAM [23], Matrix Multiplication [15],
and BlackScholes [6], on two hardware models – Intel Xeon and Intel Core i7. The re-
sults show that the sampled reuse profiles are similar to the real profiles, while the
characteristic behavior of predicted runtimes is similar to actual runtimes on all bench-
marks. Using the predicted runtimes, AMM offers insights into the optimal combination
of hardware models for software applications when run in serial mode.

The rest of the paper is organized as follows: Section 2 presents the background;
Section 3 describes AMM, Section 4 shows the experiments and the results; Section 6
concludes and recommends future research.

2 BACKGROUND

2.1 Performance Modeling

Although the question, How much execution time and energy does my algorithm cost? [10]
is not entirely new, but it helps to justify the trade-offs of the design decisions (time, en-
ergy, power, throughput, and latency). Since performance modeling with cycle-accurate
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simulations is too slow and cannot scale to large core counts, the framework in [34] in-
troduced scalable performance prediction on the then HPC systems. Their prediction
contains the simulation of an interconnect and a single processor performance, but un-
fortunately that does not scale on modern HPC machines.

Bailey and Snavely [4] developed an approach for performance prediction, which
helps the stakeholders (system designers, co-design centers, and computational scien-
tists) to improve the performance of applications.

For an optimal design decision, Ïpek et al. [18] explored the design space using
neural networks, where they devised a non-linear regression model for which the data
points in the design space are sampled at regular intervals. A machine learning frame-
work, VERITAS [19], used sparse coding [27], that identified the performance charac-
teristics (efficiency and resource significance) of proxy applications on a node. VER-
ITAS compared the performance of proxy and real codes, which identified the factors
that contribute to loss of efficiency. Another machine learning attempt [20] employed
decision-trees on communication data and network hardware counters. These trees de-
rived a strong correlation among a set of network features that contribute to the runtime.

In contrast, AMM accounts for factors such as memory hierarchy, processor latency,
and throughput. Our model is intertwined with the Performance Prediction Toolkit
(PPT) in predicting the runtimes of physics codes.

Structural Simulation Toolkit (SST) [29], a complex code execution simulator, of-
fers some similar functionality but with different goals; unlike Performance Prediction
Toolkit (PPT), relies on replicating control flow (i.e.,dynamically executes the applica-
tion), models messaging behavior, scalable unlike cycle-accurate simulators.

2.2 Performance Prediction Toolkit

Performance Prediction Toolkit (PPT) developed at Los Alamos National Laboratory
(LANL), is a scalable co-design framework, that has parameterized hardware and mid-
dleware models, accepts stylized codes as input and predicts the runtimes. PPT relies
on Simian [31], a parallel discrete event simulation engine written in Python, Lua, and
JavaScript. In Simian, each computing unit (host, compute node, CPU core) is an en-
tity. Processes perform their tasks through message exchanges to remain active, sleep,
wakeup, begin, and end. Simian advances the simulated time through a time compute()
function, that takes a task list – the number of CPU operations, memory usage, etc.The
parameterized models of PPT use the task list to approximate the runtime. The hard-
ware models – interconnects, compute nodes and CPU cores – mimic the lower level
hardware processes using regression models resulting from PAPI [8] counters data.

The drawbacks of current PPT models are – regression often relies on inaccurate
PAPI data; and the dependence on application developers expertise to explicitly spec-
ify the hit-rates. Alternatively, AMM predicts the hit-rates for a given input using an
analytical reuse profile, we discuss the state-of-the-art in reuse distance calculation.

2.3 Reuse Distance

The reuse distance of a memory reference (M) is the number of distinct addresses in the
trace after the most recent access to M. Memory traces were explored in a number of
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facets, including performance counters, reuse analysis, and cache behavior [26, 33, 35].
Our work differs in that, it improves concepts of in-situ reuse analysis from a memory
trace. The reuse distances are used in defining a reuse profile, which is a distribution of
reuse distances, that helps to estimate the availability of data in cache.

The compiler generated trace files for most scientific applications are often in tens
and/or hundreds of gigabytes. Calculating reuse profiles from such large files is infeasi-
ble, moreover, the applications spend enormous amount of computational effort in gen-
erating these memory traces. Alternatively, synthetic traces [13] are used to estimate the
reuse distributions. Partial Markov Model (PMM) [1] produced random memory refer-
ences that rely on the existence of original trace and reported inaccuracies in the reuse
profiles. Synthetic traces in [13] identified patterns in the memory references based
on an analysis of instruction profiling, branches and dependencies. Attempts in [16]
adapted least recently used stack models [7] over PMM states to accurately produce
synthetic traces, their reuse profiles are accurate but unscalable.

Other attempts that sampled reuse profiles to study data locality include, StatCache [5],
presented a probabilistic model that employs sampling to analyze the data locality on
realistic workloads. Another sampling and parallelization attempt in [32] accelerated
the reuse distance analysis on multi-cores. Unlike, these sampling attempts we use the
memory trace of a single run of a program at smaller input size to estimate the reuse
profiles at larger inputs. A recent approach [11] presented an analytical model to predict
the performance and the energy consumption of a processor using architecture indepen-
dent characteristics.

Of the attempts to approximate the reuse distance, Ding and Zhong [12] estimated
the reuse patterns of a whole program based on training runs of a few small inputs.
The model uses dependency analysis to estimate the cache misses with poor accuracy.
In a different attempt, Chatterjee et al. [9] applied a set of formulas to characterize
the cache misses, which perfectly handles nested loops and non-linear array layouts.
Their model lacks the runtime knowledge of loop bounds. Sahoo et al. [30] tried to
accurately characterize the cache miss count using reuse distances in the context of
tensor contraction computations. Recently, reuse distance analysis predicted miss-rate
per instruction [14], however, such a fine grained miss-rate estimation fail to scale.

In contrast to the existing attempts, AMM is simple, scalable and relies on Low-
Level Virtual Machine (LLVM) [21] basic blocks (BB). We calculate reuse profiles for
each BB of a program. These profiles are used to measure the cache hit-rates at different
levels, which are used in predicting the runtimes of scientific applications.

3 ANALYTICAL MEMORY MODEL

AMM is a parameterized model for performance prediction, the factors that we consider
in the prediction are: reuse distance distribution, latency and throughput of a program.
The reuse profile corresponds to modeling different cache hierarchies of a processor in
an elegant and scalable manner. These reuse profiles are used in estimating the avail-
ability of data from main memory to the processor via different cache levels. Further,
we use data availability in calculating the latency and throughput of a program.
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Generate a basic block labeled memory trace with a smaller input size to the program

Estimate the analytical reuse profile from the labeled memory trace

Measure 1) the effective latency, 2) bandwidth and 3) predict the runtime of a program

Runtime of a program

Stop

Fig. 1: Different steps in analytical memory model (AMM)

Fig. 1 shows different steps of AMM in predicting the runtime of a program. AMM
accepts a computer program (written in FORTRAN or C/C++) as an input, which is
transformed into an intermediate representation (IR) using the compilation framework,
LLVM. The transformation and analysis process involves: a) generating a memory trace
with basic block labels produced with a smaller input size of a program, b) estimating
the analytical reuse profiles of a program from the labeled memory trace, and c) mea-
suring the effective latency and throughput, with which, program runtime prediction
can be made. We describe each step in detail as follows.

3.1 Generate Memory Trace

The first step in AMM is to generate a memory trace that contains the LLVM basic
blocks. When the source code is compiled to produce IR, the transformed code consists
of basic blocks. A basic block is a straight-line code with single entry and exit, with no
intermediate branches except a branch at the exit.

The basic block labels in the trace of a program are generated using an LLVM
characterization tool, Byfl [28], developed at LANL. We extended Byfl to instrument
the memory addresses with LLVM basic block names. Note that LLVM does not cre-
ate a distinct basic block for the function calls. We resolve such an ineptitude through
preprocessing the labeled trace, where we ensure to distinguish the function calls as a
separate basic block. For example, the ith basic block (BBi) of the labeled trace contains
all the memory addresses that are generated as a result of executing the correspond-
ing straight-line code of BBi. Similar traces can be generated with Valgrind [25] and
Pin [22], however, we use Byfl as it is developed using LLVM infrastructure. Like
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AMM, the attempts in [11] present a similar architecture independent performance and
energy modeling.

3.2 Estimate Reuse Profile of a Program

The second step is to analytically estimate the reuse profile of a program (Pr(D)). The
traditional methods of measuring the reuse profile are expensive due to large memory
traces. Our technique promises to produce scalable memory traces at smaller inputs of
a program, with which we estimate the reuse profiles at larger inputs. With the memory
trace using smaller inputs, we estimate the reuse profile of a program as in Eq. 1

Pr(D) =
n(BB)

∑
i=0

P(BBi)×P(D | BBi) (1)

where, D is the reuse distance, n(BB) is the number of basic blocks, P(BBi) is the apriori
probability of executing a basic block and P(D | BBi) is the conditional reuse profile of
ith basic block.

Algorithm 1 Calculating the conditional reuse profile of a basic block (BBi)
1: procedure reuse pro f ile BBi(BBi, memory trace)
2: reuse distances, sampled wins← [ ], [ ]
3: sample size← x . x% of all the BBi(s)
4: for bb in all BBi do
5: sampled wins.append([BBi start,BBi end])
6: end for
7: windows← random(sampled wins,sample size)
8: for window in windows do
9: reuse dist ← get rd(window, memory trace)

10: reuse distances.append(reuse dist)
11: end for
12: uniq reuse dist,counts← unique(reuse distances)
13: prob rd←map(lambda x: x/len(reuse distances), counts)
14: r pro fi← zip(uniq reuse dist, prob rd)
15: return r pro fi
16: end procedure

Algorithm 1 measures the conditional reuse profile of a basic block, BBi. The al-
gorithm takes the labeled trace as input, identifies all the instances of BBi, from which,
randomly select sample size number of occurrences. For example, if a basic block ap-
pears hundred times in the trace, we randomly select n% (typically 1%) of the samples
from these occurrences. In fact, the reuse distance distributions are random due to uncer-
tain memory mapping of program data. Therefore, it is important to randomly sample
the trace, we term these random samples as windows. A window is a list that contains
the start and the end indices of a sampled BB. We measure the reuse distances of all the
memory addresses in a window, from which, calculate the corresponding probabilities.
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Algorithm 2 Calculate the reuse distances
1: procedure get rdist(window, memory trace)
2: reuse dist← [ ]
3: for idx, addr in enumerate(window) do
4: window trace← memory trace[: idx]; dict rd←{ }; addr f ound← False
5: for addr idx in range(len(window trace)) do
6: w addr← window trace[−addr idx−1]
7: if addr == w addr then addr f ound← True; break
8: end if
9: dict rd[w addr] = True

10: end for
11: if addr f ound then reuse dist.append(len(dict rd))
12: else reuse dist.append(−1)
13: end if
14: end for
15: return reuse dist
16: end procedure

Algorithm 2 calculates the reuse distances memory addresses in a window. For each
address in a window, we refer back in the trace from the current address to the exact
same address, termed as max back reference. Once we find the memory address at two
different indexes, the reuse distance for that address is the cardinality of the unique
addresses between the two indexes. If the second index is absent, the reuse distance is
infinite (∞). Similarly, the algorithm continues to measure the reuse distances for all
the addresses in a basic block through a search for a max back reference in the original
trace. At the end, the algorithm returns a list of all the reuse distances for that window.

Algorithm 1 and Algorithm 2 calculate the reuse distances for all the addresses
from all the sampled windows. Finally, we measure the frequency of each reuse dis-
tance, where the frequencies produce the respective probabilities. The reuse distances
together with the corresponding probabilities form part of the conditional reuse pro-
file of BBi, P(D | BBi). The conditional reuse profiles are application dependent, for
example, the conditional profiles of some applications may shift with input size. We
extrapolate (see Section 4) these changes in conditional reuse profiles using polynomial
regression techniques. Similarly, P(BBi) varies with the input size, measured as follows.

Measure P(BBi): Let us consider, BB1, BB2, . . . , BB j, . . . , BBn−1, BBn is a series of
basic blocks, any BB can execute any other BB. For example, the basic blocks BB1,
BB2, . . . , BBk can execute BB j, where, BB1, . . . , BBk are termed as the predecessors of
BB j. Therefore, the predecessor BBs satisfy the following linear recursive relation:

N j = ∑
i∈Pred( j)

πi j×Ni (2)

where, πi j is the transition probability (measured off-line using compiler coverage anal-
ysis/application developer can identify manually) from predecessor block BBi to BB j.
N j is a homogeneous system of linear equations with many solutions. Since the entry
basic block of most of the source codes is executed once, N1 becomes 1.
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Given πi j, the apriori probability of a basic block (P(BBi)) is defined as in Eq. 3:

P(BBi) =
Ni

n(BB)
∑

k=0
Nk

(3)

where, Ni and Nk are the number of calls to the ith and kth basic blocks respectively.
P(BBi) changes with respect to the input size, however, we use the same labeled

memory trace at smaller inputs to estimate the reuse profiles for larger instances of
the program. We repeat our off-line analysis on P(BBi) in order to generate the apriori
probabilities of basic blocks at bigger inputs. Note, the basic blocks with no memory
access in their trace has no contribution towards the final reuse distribution.

3.3 Predict Runtime

The final step in AMM is to predict the runtime of an application. In runtime prediction,
we measure latency and throughput using the reuse profile. The reuse profile calculates
the availability of the data (hit-rates) from main memory to processor via different cache
levels. The total predicted runtime of a program is the sum of the average memory ac-
cess time (Tavg mem) and the average time taken for the CPU operations (TCPU ops). The
application characterization tool, Byfl is useful in counting the total memory required
for the program and the number of CPU operations.

Therefore, the predicted runtime is measured with Eq. 4:

Tpred = Tavg mem +TCPU ops (4)

Probability of a cache-hit In predicting the runtime, identifying the data availabil-
ity at different cache levels is essential. With the analytical reuse profiles (Pr(D)), we
measure the cache hit-rates (data availability) employing a stack distance based cache
model (SDCM) [7], which helps to estimate the probability of a hit at any cache hier-
archy (L1, L2, or L3) for a given memory reference with a specific reuse distance. The
following formula represents the probability of a hit for an n-way associative cache at a
given reuse distance (P(h | D)):

P(h | D) =
A−1

∑
a=0

(
D
a

)(
A
B

)a(
B−A

B

)(D−a)

(5)

where D is the reuse distance, A is the associativity and B is cache size in terms of
number of blocks (which is cache size over cache line size). For example, an L1 cache
of size 64K with line size 64 has B = 1024 blocks. For a direct-mapped cache, P(h | D)
is ((B−1)/B)D [7]. Therefore, the unconditional probability of a hit P(h) for the entire
program can be approximated as in Eq. 6

P(h) =
N

∑
i=0

P(Di)×P(h | Di) (6)
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where, P(Di) is the probability of ith reuse distance (D) in a reuse distribution Pr(D).
Herein, we investigate two variations (contiguous and non-contiguous) of runtime pre-
diction with respect to the availability of data on memory and/or cache.

Case 1 (Contiguous): Memory Runtime Prediction Assuming the contiguous avail-
ability of memory, the average memory access time is measured as in Eq. 7:

Tavg mem =
λavg +(b−1)×βavg

b
× total mem (7)

where λavg is average latency, βavg is average reciprocal throughput, b is block size and
total mem is the total memory required by the program. The latency and throughput are
per memory access, while the block size is considered as word size with the assumption
of the availability of contiguous memory. Dividing the first term with block size will
result in the average memory access time per byte, multiplying with total mem results
in the total memory access time of a program.

The hit-rates (Eq. 6) at different cache levels estimate the average latency and
throughput of a given program. The average latency for a three-level cache is in Eq. 8

λavg = PL1(h)×λL1 +
(

1−PL1(h)
)[

PL2(h)×λL2 +
(

1−PL2(h)
)[

PL3(h)×λL3

+
(

1−PL3(h)
)
×λRAM

]] (8)

where, λL1 , λL2 , λL3 and λRAM are the hardware specific measured latencies of L1, L2,
L3 caches and RAM respectively; PL1(h), PL2(h) and PL3(h) are the probabilities of a
hit for L1, L2 and L3 caches respectively, that are calculated using Eq. 6. Similarly, we
measure the average throughput, βavg (replace λ s in Eq. 8 with β ).

Case 1 (Contiguous): Measure TCPU ops Byfl and/or a simple off-line analysis helps
to identify the number of CPU operations (ADD, SUB, and DIV, etc.) of a program. We
measure the time required for CPU operations using the hardware specific instruction
latencies and the operations count, thus, the total runtime is predicted as Tpred (Eq. 4).

Case 2 (Non-contiguous): Memory Runtime Prediction In measuring the average
memory access time, as opposed to the previous consideration, we consider the non-
contiguous alignment of memory, as is the case in reality. There will be gaps (v) in
between the required program data, therefore, the new block size (b in Eq. 7 becomes
bnew): bnew = b+v. However, the entire block may not always be transferred from main
memory to different cache levels due to the dependence on factors such as data bus
width, and cache size, etc. Therefore, we model such a unique behavior of cache as
follows. Let us consider, bnew

1 , bnew
2 , bnew

3 , . . . , bnew
i , . . . , bnew

n are the blocks of data
on main memory, while C be the amount of data transferred on to a cache from main
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memory at any given time. Thus, the new block size at a given cache size (B) can be
re-written as:

bnew =


C : if bnew

i ≤Cbnew
i
C

×C : if B≥ bnew
i ≥C

B : if bnew
i ≥ B

Case 2 (Non-contiguous): Time for CPU Operations (TCPU ops) In case of the time
taken for CPU operations, there is a large difference in the instruction latencies between
DIV and the rest of the instructions. Moreover, the time required for CPU operations is
dependent on program characteristics, where some applications are instruction latency
dependent while others are throughput reliable. Thus, the time for the resultant CPU
operations is:

TCPU ops =


λin +(Nin−Nin div−1)×βin +λdiv +(Nin div−1)×βdiv : throughput

(Nin−Nin div−1)×λin +(Nin div−1)×λdiv : latency

where λin, λdiv, βin and βdiv are latencies and throughputs of instructions, ADD/SUB,
MUL and DIV respectively, while Nin and Nin div are the number of instructions.

4 EXPERIMENTS

In this section, we describe the target architectures and the benchmark applications used
in validating our model.

Table 1: The target architectures and their parameters

# Processor
Speed Cache Size (bytes) Shared
(GHz) L1 L2 L3 L3?

1 Intel Xeon E5-2695 2.10 64K 256K 45M Yes
2 Intel Core i7-4770HQ 2.20 256K 1M 6M No

4.1 Target Architectures

We use AMM to validate three different benchmark applications on two hardware ar-
chitectures. Table 1 presents the two processor architectures, each of which uses three
cache levels with different sizes. The L3 cache of Intel Xeon processor is shared among
the available cores on the chip while that of the Intel Core i7 is unshared.

In predicting the runtimes, we build the hardware models for the two experimental
processors (Table 1) along with AMM in Performance Prediction Toolkit (PPT). PPT
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has parametrized hardware models and software proxy applications. The hardware pa-
rameters of PPT are: cache latencies, cache sizes, cache line sizes, associativity, and
memory bandwidth (throughput) at different cache levels (we consider the reciprocal
throughput), RAM latency, and data bus width. The hardware parameters are measured
values for a given processor, reasonably reliable sources include Agner Fog’s man-
ual [2], Intel and others4 present these parameter values for a number of hardware ar-
chitectures. We can measure these parameters using standard benchmarks, nevertheless,
the objective in this paper is performance modeling rather parameter calibrations. The
latencies and throughputs used in the hardware model include both at the cache hierar-
chies and the instructions such as ADD/SUB, MUL, and DIV. The software parameters
are: total memory of an application, the number of integer and floating point operations
(add, mul, etc.), and the block size (Eq. 7 in section 3.3), measured using Byfl.
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Fig. 2: Compare the original (left) and analytical (right) reuse profiles of STREAM
(top), MM (middle), and BlackScholes (bottom) at input sizes of 10000 floating-points,
matrix of size 25× 25 and 16 data points respectively. Original distribution is measured
using a stack based algorithm, while that of the analytical is measured using AMM with
100% sampling. The reuse distance (D) is in log scale while Pr(D) is in decimal scale.

4 http://www.7-cpu.com/cpu/Haswell.html
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4.2 Benchmarks

The three benchmark applications we used are: STREAM [23], matrix-matrix multipli-
cation (MM) [15], and BlackScholes [6].

STREAM is a memory benchmark with vectors of floating point operations. STREAM
contains four kernels: ADD performs the sum of two vectors; SCALE multiplies a
vector with a floating-point scalar; COPY assigns one vector into another and TRIAD
performs the above three operations. We execute all the above four kernels.

MM is a naive implementation (ijk method that has 3 nested loops) of floating-point
matrix-matrix multiplication. MM, in this paper, is defined as R = αP×Q+βR, where
P, Q and R are m × k, k × n and m × n matrices respectively while α and β are
floating-point scalars.

BlackScholes is a PARSEC benchmark, partial differential model used to predict the
European stock option prices. BlackScholes functions within two nested loops, where
the outer-loop stands for the number of iterations of the algorithm and the inner loop
performs the floating-point operations needed for option prices.

5 Results

We implemented the respective proxy application in PPT for all the three benchmarks.
We validate AMM for these three applications as follows: 1) compare the real and
predicted reuse profiles, and 2) compare the real and predicted runtimes. Both the sim-
ulation and actual runs are computed on a single core of a CPU.

5.1 Validate Reuse Profile

Our goal is to validate the analytical reuse profiles with that of the actual profiles. The
reuse profiles are discrete, in general, they are architecture independent due to which
the reuse profiles are same across the two experimental hardware architectures.

Fig. 2 compares the actual and the analytical reuse profiles of both the benchmarks.
The analytical reuse profiles are prepared with 100% sampling. For example, if a basic
block contains ten occurrences, all of them contribute to calculate the conditional reuse
profiles before multiplying the probability (P(BBi) × P(D|BBi)) of execution of that
basic block. We adopted 100% sampling in order to validate the actual and analytical
profiles, in the runtime prediction, we consider 1% sampling, which guarantees scala-
bility. On all the three benchmarks, AMM calculated reuse distances (D, on X-axis) are
identical to that of the actual reuse distances, so does their number of occurrences. The
corresponding probabilities (Pr(D), on Y-axis) are approximately similar, the analytical
probabilities are slightly higher at a few reuse distances because of their dependence on
the accuracy of P(BBi). Nonetheless, these inaccuracies have insignificant impact on
the final cache hit-rate, therefore, the analytical reuse profiles are similar to the actual.
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Table 2: Benchmarks with different input sizes.
# Program Input Sizes
1 STREAM {10000, 20000, 30000, 40000}
2 MM {25 × 25, 50 × 50, 100 × 100, 200 × 200}
3 BlackScholes {16, 32, 64, 128}

The original reuse profiles are measured using a stack [24] based implementation
that has a time complexity of O(NM). The analytical reuse profiles are measured us-
ing Algorithm 1, which has a computational complexity of O(NSB) ∼ O(N), since the
number of samples (S) and size of the basic block (B) are constant. The worst case
complexity is O(NM), in the case of 100% sampling, which will never happen.
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Fig. 3: Sampled analytical reuse profiles (reuse distance (D) is on log scale) of the three
benchmarks: STREAM (left), matrix multiplication (middle), and BlackScholes (right)
at different input sizes. The rate of sampling is 1%, while the base memory traces for
the three benchmarks are at input sizes of 10000, 25×25, and 16 respectively.

5.2 Validate Runtime

We validate the AMM predicted runtimes with that of the actual for all the three bench-
mark applications at different input sizes on both the target architectures. Table 2 presents
four different input sizes for each of the three benchmarks. For example, STREAM has
three floating-point vectors, all of which are initialized with same input size. The inputs
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for each run of STREAM varies from 10000, 20000, 30000 to 40000 elements. Sim-
ilarly, MM and BlackScholes have four square matrix sizes and four datasets (16, 32,
64, and 128 data-points) respectively. We report both the actual and predicted runtimes
at four different input sizes on each benchmark.

In predicting the runtimes, we analytically estimate the reuse profiles at each in-
put using the memory trace (1% sampling) for the smaller input size of the respective
benchmark. For example, in the case of MM, we use the memory trace at an input size
of 25×25 as the base to estimate the reuse profiles at 50×50, 100×100 and 200×200.
The probabilities of basic blocks (P(BBi)) change as the input size changes.

Fig. 3 shows the analytical (1% sampling) reuse profiles of both the benchmarks
at different input sizes. The sampled reuse profiles are approximately similar to that of
the original, however, some large but relatively rare reuse distances disappear due to
random sampling. For example, if a basic block occurrence appears at the bottom of the
memory trace, there is a chance to omit such occurrences due to 1% random sampling,
thereby, the larger reuse distances disappear. These large values may have significant
impact on the cache hit-rates, thus, we propose to extrapolate these reuse distances,
similar to Zhong et al. [36], where the prediction of program locality with respect to
inputs identifies the data access patterns and builds a parametrized model for extrapola-
tion. In contrast to Zhong et al., we extrapolate the conditional reuse distances of basic
blocks (instead of the whole program) at larger input sizes of a program using the reuse
distances at a few smaller inputs. In fact, extrapolating the conditional reuse profiles of
basic blocks using small input reuse distances preserves our promise of scalable AMM.
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Fig. 4: Probabilities (left) of all basic blocks (BBs) of MM at multiple small inputs.
Extrapolation of reuse distances (right) as a function of input size (x) for matrix multi-
plication using the data from five small runs at five different input sizes.

Extrapolate the conditional reuse distances of a BB From the probability distribu-
tion of executing the basic blocks, we observe that a few number of the total basic
blocks of a program have significant impact on the reuse profiles. Fig. 4 (left) shows
the probability of executing each basic block (P(BBi)) at different small input sizes (10,
12, 15, 17, and 20) of MM. Of all the twenty two basic blocks of a MM program, BB15
– BB17 have relatively significant contribution over the remaining basic blocks. Empir-
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ically, the number of entries in the conditional reuse profiles of these three basic blocks
grow with the input size, while that of the remaining basic blocks remain consistent
irrespective of the input size. Therefore, extrapolating the conditional reuse distances
of these significant BBs helps in identifying the missing large reuse distances.

We explain the extrapolation strategy on one of the three BBs, BB15, where we find
that the first few (seven for MM) reuse distance entries of the distribution remain un-
changed irrespective of the inputs. Probability of these reuse distances contribute 75%
of the distribution, while the other growing reuse distances contribute the remaining
25%. Since these initial entries are consistent, what the following linear relation (Eq. 9)
predicts is useful in estimating the reuse distances at any input size (x).

D
′
i|x = Di ∀ i = 1 . . .7 (9)

where, D
′
i|x is new reuse distance at an input, Di is the reuse distance of a basic block.
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Fig. 5: Conditional cache hit-rates at a given reuse distance for all the three benchmarks
– STREAM (left), matrix multiplication (middle) and BlackScholes (right). B1, B2 and
B3 are the cache sizes in terms of number of blocks (see section 3.2) for L1, L2 and L3
caches respectively.

We extrapolate the remaining reuse distance entries that grow with the input size,
where the number of these entries are inconsistent at each input size. In order to regulate
these inconsistencies, we apply a fixed-binning strategy, in which, we use a constant
number of bins, each of which represents an average of the subset-of-reuse-distances.
The number of entries within a bin changes while the total number of bins remain same.
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Fig. 4 (right) shows the extrapolation of three bins using five small input sizes. The
points represent the average reuse distances for each bin while the curves represent the
predicted polynomial fit for each bin as a function of input size (x). Note, the input (x)
in the extrapolated curves is on one-dimension of MM. We observe that the predicted
average reuse distances grow in polynomial fashion. Similarly,n we can estimate the
respective probabilities of these reuse distances, together forms the extrapolated condi-
tional reuse profile of a BB. We can increase the number of bins, however, estimating
the hit-rates relies on the magnitude of the reuse distances rather the distinct number of
reuses alone. That way, we extrapolate the conditional reuse profiles of the most sig-
nificant basic blocks of an application and combine the reuse profiles of all the basic
blocks to produce the complete reuse profile of a program.

Our prediction strategy does not incur the extra computational overhead of extrap-
olating the reuse profiles on the whole program (as opposed to Zhong et al., therefore,
AMM is scalable), while approximates the hit-rates with reasonably good accuracy.

Is the data available for use by the processor? Given the reuse profiles, it is essen-
tial to analyze the availability of data for the processor. Fig. 5 shows the conditional
cache hit-rates at a given reuse distance for three different cache sizes (L1, L2, and L3).
The results are for the input sizes of 10000, 25× 25 and 16 of STREAM, MM and
BlackScholes respectively. Since the reuse distances are independent of the underlying
hardware, we use the same reuse profile (with respect to the benchmark) to measure
the cache hit-rates at different cache sizes. However, the conditional hit-rates at a given
stack distance are calculated on Intel Xeon E5-2695 architecture. The reuse distance (D)
is on a log scale, whereas B1, B2 and B3 are cache sizes measured in terms of the number
of blocks (cache-size/cache-line-size). PL1(h|D), PL2(h|D) and PL3(h|D) are conditional
hit-rates at three cache levels L1, L2 and L3 respectively. On all the benchmarks, the
cache hit-rate at a reuse distance (PL1(h|D)) suddenly drops for L1 cache after the cache
size (B1), which confirms that the application data exceeds the L1 cache of Intel Xeon
processor. A similar behavior is found on L2 cache in the case of STREAM and ma-
trix multiplication, while for BlackScholes the data exists on L2 cache. STREAM data
slightly exceeds the L3 limits, while the data of the remaining two benchmarks is avail-
able on L3. We found that the probability of the corresponding large reuse distances
(P(Di) in Fig. 3) is approximately zero.

However, for Intel Core i7-4470HQ – BlackScholes data exists in L1 cache and the
remaining two benchmarks data does not exist; on L2, STREAM data is not present
while the remaining two benchmarks data does exist; L3 can hold the data for all the
three benchmarks. Since Intel Core i7 has relatively large L1 and L2 cache sizes, the data
is readily available for the processor. Intel Core i7 have relatively smaller L3 cache size
compared with that of Intel Xeon. Intel Core i7 processors L3 capacity is insufficient for
large input sizes of a program. In addition, L3 cache of Intel Xeon is shared among the
available cores while that is not the case with Core i7. With these characteristics, reuse
distances that exceed the cache sizes are always a miss. These observations (Fig. 5)
suggest that the availability of data in the cache depends on the target architectures and
the application data requirements.
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Fig. 6: Error-rates of predicted runtimes (with respect to the actual runtimes) for the
three benchmark applications (STREAM, matrix multiplication (MM) and BlackSc-
holes on both the target architectures (Intel Xeon E5-2695, Intel Core i7-4770HQ).

A discussion on the locality of data is out of the scope. However, this study shows
that the 1% sampled reuse profiles are reasonably better approximations in estimating
the runtime of an application. Therefore, for better availability of data, we suggest to
design a processor with the L1 and L2 caches of Intel Core i7 and the L3 of Intel Xeon.

Prediction of run-times We validate the predicted runtimes, Fig. 6 presents the error-
rates of the AMM predicted runtimes when compared wxith that of the actual for all
the three benchmarks at different input sizes on the two target architectures. We assume
that the processor executes one application at a given time, so that the cache and RAM
are available for the application. We observe that Intel Core i7 error-rates of STREAM
are significantly higher than the Intel Xeon due to small L3 cache size of Core i7. For
the remaining two benchmarks (MM and BlackScholes), the difference in the predicted
error-rates across both the target architectures is insignificant, The reason being the fact
that the application data for these two benchmarks fits in the cache hierarchy.

We observe that AMM over-predicts the runtimes when compared to the actual
runtimes, especially, at larger input sizes. Although we over-predict, the characteristic
behavior of the runtimes with respect to the input remains in coherence with the actual
runtimes. The reason behind the over-prediction is due to the fact that AMM is purely
a memory model. We can reduce such over-prediction through a model for pipelines
along with the memory model. AMM assumes the execution of the program in com-
plete sequential mode, whereas the actual CPU core executes the independent tasks
simultaneously through pipelines. In addition to pipelines, factors such as prefetch-
ing, replacement strategy, TLB, vector operations, micro-architecture, and etc can have
higher dividends in performance prediction. Building a parameterized model (one of
our future directions to investigate) using these factors that work hand-in-hand with
AMM would reduce the over-prediction in runtimes. Although the pipeline effect is not
present in AMM, the predicted runtimes are reasonably abreast with that of the actual
while we also claim that the characteristic behavior of the predicted runtimes is akin to
the actual runtimes of all the benchmarks on both the target architectures.

Between Intel Xeon and Core i7, the latter is much faster than the former on these
set of benchmarks due to higher clock speed. Our observations (Fig. 5) in cache sizes
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play a significant role in making the data available for processor, which obviously im-
pacts the performance of an application. Intel Core i7 clearly has larger L1, L2 caches
and a smaller L3 cache, which in fact, is insufficient for large applications that might
have adverse effects on performance despite processor speed. Intel states that the Broad-
well family of Xeon processors are less powerful and energy efficient compared to the
Haswell of Intel Core i7. With our study, we believe that increasing the L1 and L2 cache
sizes of Xeon processors might further boost the performance with little/minimum ef-
fect on energy consumption, especially, when the execution of an application becomes
concurrent/parallel.

6 CONCLUSION

We presented a novel analytical memory model (AMM) that produces basic block la-
beled memory traces using LLVM instrumentation. The memory traces at smaller in-
puts are randomly sampled to produce the reuse distance distributions at larger inputs
for scientific applications. Using the smaller input memory traces, reuse distance pro-
files of the applications are estimated at larger input sizes. The analytically measured
reuse profiles are similar to the actual reuse profiles. Further, the estimated reuse pro-
files are used to predict the runtimes of the applications. Our hardware model consists of
low-level details such as latency, throughput of different hardware components (cache
levels, RAM, etc.) and CPU instructions (add, sub, mul, etc.). The runtime results are
consistent with the real runtimes while the characteristic behavior of the predicted run-
times is similar to that of the actual runtimes. We observed that AMM over-predicted
the runtimes due to nonexistence of pipeline, cache prefetching, hardware threads, and
TLB in the hardware model. Developing and integrating these missing models would
guarantee a close prediction, therefore, is one of our future directions. With the addition
of pipelines in AMM, similar to [4, 17, 20], we aim to predict the performance of MPI
aware applications. Nevertheless, having AMM like fine-grained hardware model is es-
sential for accurate and scalable performance prediction in distributed environments.
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18. E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz. Efficiently exploring
architectural design spaces via predictive modeling. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XII, pages 195–206, New York, NY, USA, 2006. ACM.

19. T. Z. Islam, J. J. Thiagarajan, A. Bhatele, M. Schulz, and T. Gamblin. A machine learn-
ing framework for performance coverage analysis of proxy applications. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’16, pages 46:1–46:12, Piscataway, NJ, USA, 2016. IEEE.

20. N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale. Predicting application perfor-
mance using supervised learning on communication features. In Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis, SC
’13, pages 95:1–95:12, New York, NY, USA, 2013. ACM.



20 Chennupati et al.

21. C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages 75 – 87, Wash-
ington, DC, USA, 2004. IEEE.

22. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

23. P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas, R. Rabenseifner, and
D. Takahashi. The hpc challenge (hpcc) benchmark suite. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

24. R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

25. N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary in-
strumentation. In Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07, pages 89–100, New York, NY, USA, 2007.
ACM.

26. A. T. Nguyen, P. Bose, K. Ekanadham, A. Nanda, and M. Michael. Accuracy and speed-up
of parallel trace-driven architectural simulation. In Proceedings 11th International Parallel
Processing Symposium, pages 39–44. IEEE, 1997.

27. B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 37(23):3311 – 3325, 1997.

28. S. Pakin and P. McCormick. Hardware-independent application characterization. In In-
ternational Symposium on Workload Characterization (IISWC), pages 111–112, Portland,
Oregon, USA, 2013. IEEE.

29. A. F. Rodrigues, R. C. Murphy, P. Kogge, and K. D. Underwood. The structural simulation
toolkit: Exploring novel architectures. In Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, SC ’06, page 157, New York, NY, USA, 2006. ACM.

30. S. K. Sahoo, R. Panuganti, P. Sadayappan, and P. Krishnamoorthy. Cache miss characteriza-
tion and data locality optimization for imperfectly nested loops on shared memory multipro-
cessors. In Proceeding of the 19th IEEE International Parallel and Distributed Processing
Symposium, pages 44–53, 2005.

31. N. Santhi, S. Eidenbenz, and J. Liu. The simian concept: Parallel discrete event simulation
with interpreted languages and just-in-time compilation. In Proceedings of the 2015 Winter
Simulation Conference (WSC), pages 3013–3024. IEEE, 2015.

32. D. L. Schuff, M. Kulkarni, and V. S. Pai. Accelerating multicore reuse distance analysis
with sampling and parallelization. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’10, pages 53–64, New York, NY,
USA, 2010. ACM.

33. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large
scale program behavior. In Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS X, pages
45–57, New York, NY, USA, 2002. ACM.

34. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A framework
for performance modeling and prediction. In Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, SC ’02, pages 1–17, Los Alamitos, CA, USA, 2002. IEEE.

35. J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely. Quantifying locality in
the memory access patterns of hpc applications. In Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, SC ’05, pages 50–61, Washington, DC, USA, 2005. IEEE.

36. Y. Zhong, X. Shen, and C. Ding. Program locality analysis using reuse distance. ACM Trans.
Program. Lang. Syst., 31(6), 2009.


