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Abstract—Performance of future large-scale HPC systems will 

be limited by costs associated with scaling power. Some HPC 

centers are reaching the limits of their existent site power delivery 

infrastructure and are facing prohibitive upgrade costs. Others 

are reaching budgetary limits on their energy operating costs. 

Without a breakthrough in energy efficiency, the HPC industry 

may fail to maintain historical performance scaling rates and fall 

short of 2018-2020 Exascale performance goals by an estimated 2-

3x margin. Overcoming this gap will require co-designed 

hardware and software system energy management solutions and 

increased collaboration between hardware vendors and the HPC 

software community. In this work, we introduce the Global 

Extensible Open Power Manager (GEOPM): a tree-hierarchical, 

plug-in extensible, open source runtime framework that we are 

contributing to the HPC community to accelerate collaboration 

and research toward co-designed energy management solutions. 

First results with an experimental power rebalancing optimization 

demonstrate up to 32% improvements in the runtime of CORAL 

system procurement benchmarks like miniFE and Nekbone in a 

power-limited Xeon Phi cluster. These promising initial results 

motivate further work with the community to extend GEOPM to 

new optimization strategies to achieve further speedups.   

Keywords—runtime systems; scalability; control systems; 

tuning; power management; RAPL; P-states; DVFS; resource 

management; power-aware scheduling; performance optimization 

I. INTRODUCTION 

Performance of future large-scale HPC systems will be limited by 
costs associated with scaling power. Some HPC centers are reaching 
the limits of their existent site power delivery infrastructure and are 
facing prohibitive upgrade costs. Others are reaching budgetary limits 
on their energy operating costs [14]. Without a breakthrough in energy 
efficiency, the HPC industry may fail to maintain historical 
performance scaling rates and fall short of 2018-2020 Exascale 
performance goals by an estimated 2-3x gap [15].  

This estimate of a 2-3x gap assumes the continued success of 
existing scaling techniques like shrinking transistor features, improving 
hardware architecture, and increasing integration of system 
components. These are hardware-centric techniques for scaling 
performance. Even if existing techniques are fully successful, 
overcoming the remaining 2-3x gap will require going beyond 
hardware-centric techniques and co-designing next-generation 
solutions with the HPC software community.  

In this work, we introduce the Global Extensible Open Power 
Manager (GEOPM): a tree-hierarchical, plug-in extensible, open source 
runtime framework that we are contributing to the HPC community to 
accelerate collaboration and research toward co-designed energy 
management solutions. This paper is the result of 4 years of research 
and development within the GEOPM project and a preceding project 

internal to Intel by a subset of the same authors. This work makes three 
primary contributions: 

 This work provides a scalable runtime for global optimization of 
power and performance control knobs across all compute nodes in 
a job. GEOPM’s tree-hierarchical design and control algorithms 
enable scalable coordination of energy management decisions 
across nodes for better results than prior node-local approaches 
have obtained. Furthermore, the flexibility of its tree-hierarchical 
design makes GEOPM suitable for a wide range of deployments, 
spanning from rack-scale to Exascale deployments.  

 This work contributes GEOPM to the community as an open source, 
extensible framework to accelerate research of new HPC energy 
management solutions. GEOPM provides a plug-in architecture 
enabling researchers, developers, hardware vendors, or HPC site 
administrators to add new optimization strategies to GEOPM or 
enable it to target new control knobs in the software or hardware 
layers. Via plug-ins, GEOPM’s objective can range from finding 
the knob settings that minimize job runtime within a job power cap 
to finding settings that reach a custom tradeoff between runtime and 
power. In future work, the authors of this paper will examine select 
community plug-ins and research ways to co-design Intel hardware 
features for even better results with those plug-ins.  

 This work explores a new energy management algorithm as a plug-
in for GEOPM that guides the hardware to more effective use of 
limited power for significant performance improvements. To obtain 
these improvements, the plug-in leverages application-awareness to 
identify compute nodes on the critical path in an MPI job then 
diverts power from nodes off of the critical path to accelerate the 
critical path nodes. Power and performance are adjusted via RAPL 
[13] hardware controls. To our knowledge, our power rebalancing 
techniques are the first to integrate hierarchical algorithms intended 
for deployment at scale in TOP500 systems. 

 

Figure 1: GEOPM Interfaces and HPC System Stack Integration 
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The GEOPM runtime framework is being developed with the intent 
of deployment on the Argonne CORAL Theta system (Knights Landing 
Xeon Phi) and other future Xeon and Xeon Phi systems. First results 
with the experimental power rebalancing optimization demonstrate up 
to 32% improvements in the runtime of CORAL system procurement 
benchmarks like miniFE and Nekbone in a power-limited Xeon Phi 
cluster. These promising initial results motivate further work with the 
community to extend GEOPM’s optimizations for further speedups.   

The GEOPM software package is available under the BSD three 
clause open source software license in the GEOPM source code 
repository on github (project page: geopm.github.io/geopm). The 
GEOPM runtime framework, test infrastructure, and Intel-developed 
power rebalancing plug-in are all open source. Over time, the code will 
be further hardened for deployment in production systems. 

II. RELATED WORK 

To our knowledge, GEOPM is the first open extensible runtime 
framework to be contributed to the community by a hardware vendor 
with the intent of collaborative research toward software-hardware co-
designed energy management solutions in future HPC systems. While 
there are parallel co-design efforts such as OpenPOWER [17] which 
seek to enable the community to customize systems based on the IBM 
POWER architecture, we are not aware of any specific efforts within 
the OpenPOWER project to research co-designed energy management 
solutions. While GEOPM only currently provides plug-ins supporting 
x86 systems, users can develop and add plug-ins supporting POWER 
or other system architectures.  

To our knowledge, GEOPM is the first open source job-level 
energy management runtime for HPC systems to support extensible 
energy management control strategies through a plug-in architecture, 
making it suitable for the differing energy management needs of a wide 
range of HPC installations around the world. The Power API 
Specification from Sandia [16] is a synergistic effort, but it is an 
orthogonal effort because it emphasizes power interfaces rather than 
runtime techniques for optimizing energy. The Power API project is 
defining community-standard interfaces for power monitoring and 
control at various granularities throughout the HPC stack. Runtimes 
like GEOPM and other components can collectively target these 
interfaces to achieve interoperability. Sandia and the GEOPM team are 
collaborating to explore changes targeted at future releases of the 
specification to increase support for GEOPM and its interfaces.  

In this work, we develop a plug-in for GEOPM for power 
rebalancing at the job level. Prior works such as Conductor [1], Adagio 
[2], and Jitter [3] have demonstrated effective algorithms for 
reallocating power between nodes to compensate for application load 
imbalance – whether for the purpose of increasing application 
performance under a job power cap by accelerating the critical path or 
improving application energy efficiency by reducing performance in 
nodes off of the critical path. While these algorithms are effective at 
smaller scales (i.e. less than a few thousand nodes), their centralized 
designs are not intended for large-scale deployments or extreme-scale 
deployments in future Exascale systems. The key difference is that the 
GEOPM power balancer plug-in has a flexible tree-hierarchical design 
suitable for deployments ranging in scale from rack-scale to extreme-
scale deployments. We note, however, that we have a collaboration 
underway with LLNL and Argonne National Laboratory to compare 
approaches and meld together the best aspects of each approach in a 
future GEOPM plug-in and paper.  

There is a parallel work to GEOPM called the Argo project [24] 
which is developing a task-based programming model and runtime for 
Exascale HPC systems. Its design includes a hierarchical power 
manager. Unlike GEOPM, the Argo power manager is not intended as 
a vehicle for the community and hardware vendors to collaborate on 
researching new energy management solutions. Furthermore, while the 

Argo project envisions this power manager performing automatic 
hierarchical power budgeting, that functionality is not complete to our 
knowledge. What has been demonstrated is hierarchical enforcement of 
power budgets that were adjusted manually at runtime. That said, the 
GEOPM team is interested in exploring if Argo’s algorithms could be 
implemented as GEOPM plug-ins and brought to fruition in production 
deployments through the GEOPM framework.  

We note that there have also been orthogonal efforts [25] to develop 
hierarchical power management frameworks for enterprise data centers. 
They employ significantly different energy management strategies 
suitable for enterprise workloads and virtualized environments. There 
have been other related works that focused on saving power given a 
time bound. Some have used linear programming to optimize energy 
savings with nearly no runtime increase [19]. Others have achieved 
bigger power savings in exchange for small performance degradations 
[20, 21, 22, 23].  

Aside from prior works on saving energy while maintaining 
performance levels, hierarchical power capping, and rebalancing power 
across nodes to increase job performance under a power cap, there have 
also been prior works on power-aware scheduling algorithms for energy 
management at the system level [4, 5, 6]. These algorithms comprehend 
system-level power caps and assign a different power cap to each job 
based on its runtime and power characteristics with the goal of reducing 
job wait times or optimizing overall system throughput. GEOPM is 
synergistic with these works: the intent is for GEOPM to integrate with 
a power-aware scheduler in an extended energy management hierarchy. 
In particular, the scheduler can view GEOPM as a mechanism for 
optimizing the job’s performance or energy efficiency within the 
scheduler-specified job power budget, and the scheduler can optimize 
system performance and efficiency by deciding the best allocation of 
the system budget among concurrent jobs. For maximum benefits, 
GEOPM supports dynamic adjustments to the job cap.  

III. GEOPM DESIGN OVERVIEW 

This section provides an overview of the GEOPM design, 
beginning with discussion of how GEOPM integrates into the HPC 
system stack. We cover the components that GEOPM interacts with and 
the interfaces it provides for interaction with those components. Then, 
we describe GEOPM’s scalable tree-hierarchical design. We cover 
GEOPM’s hierarchical control algorithms and the mechanisms it uses 
for communication throughout its control hierarchy, communication 
with software layers, and communication with the hardware. Finally, 
we provide references to developer documentation describing how to 
use GEOPM’s interfaces and write plug-ins for GEOPM.  

A. GEOPM Interfaces and Integration Architecture 

 Figure 1 illustrates how the GEOPM runtime fits into the HPC 
system stack. GEOPM is a job-level energy manager. It runs in 
userspace. The GEOPM runtime interacts with the scheduling functions 
of the workload manager through the workload manager interface. This 
interface lets future power-aware schedulers assign a power cap for the 
job and configure which energy management plug-in GEOPM should 
use to manage the job. It also allows GEOPM to report back how much 
power the job consumed and statistics about the job that GEOPM has 
collected. There is an option for the interface to be used at job start and 
finish (statically) or periodically while the job is running (dynamically).  

There is also an interface to the application software or libraries 
(shown at the middle right of the figure). This software interface allows 
the programmer to mark up their code and hint to GEOPM about global 
synchronization events in the application that could result in 
performance loss if some MPI ranks fall behind in the computation and 
reach the synchronization point late. The interface also enables 

file:///C:/Users/jmeastep/Documents/Work%20Related/Exascale/my-documents/auto-tuner%20work/CORAL%20Auto-Tuner%20NRE/publications/geopm.github.io/geopm


programmers to hint to GEOPM about regions (i.e. phases) in the 
application or library code between synchronization events and provide 
an application-level performance signal that GEOPM plug-ins can use 
to adapt their decisions as the application transitions between phases.  

For example, a GEOPM plug-in may adjust the P-state of the cores 
as the application alternates between compute-intensive, memory-
intensive, and communication-intensive phases, decreasing frequency 
in memory- or communication-intensive phases to save power. The 
software interface is lightweight and minimally invasive, but future 
work will explore methods of automatically inferring phase and 
performance information to enable GEOPM usages where applications 
require zero markup to use any plug-ins that make per-phase decisions.  

Other future work on the software interfaces will explore 
extensions to enable application or library developers to express tunable 
knobs in the software layers of the system to GEOPM for dynamic 
tuning. Examples may include the choice of how many threads to 
employ in OpenMP parallel regions, the choice of heuristics employed 
by the MPI and OpenMP libraries, or traditional application-level auto-
tuning knobs such as the choice of algorithm, cache blocking factor, etc.  

The GEOPM team has also been exploring how administrators and 
users may want to interact with job-level power managers, and those 
interactions will be achieved through the user and admin interfaces. The 
user interface enables users to request that GEOPM use a specific 
energy management plug-in for the job. This user interface may be 
implemented using multiple methods. One method is to wrap the 
SLURM srun queue command (or equivalent queue commands 
provided by other workload managers). The admin interface enables the 
administrator to provide a default selection for the GEOPM plug-in. 

A detailed description of GEOPM’s interfaces is available but 
outside the scope of this paper. In addition to interface specifications 
for developers, we also provide tutorials and example MPI applications 
in the GEOPM source code repository illustrating how to use the 
interfaces. See [7] for the documentation and tutorials. Video 
walkthroughs of the tutorials are also available on YouTube [18]. 

B. GEOPM Scalable Tree-Hierarchical Design 

GEOPM is designed to scale for deployment on systems ranging in 

size from a single rack to an Exascale system with over 100,000 

compute nodes. This is accomplished through a flexible tree-

hierarchical design. As illustrated in Figure 2, the GEOPM runtime is 

implemented as a tree hierarchy of controllers. It is a feedback-guided 

tree-hierarchical control system. The energy management strategy 

employed by each controller in the tree is extensible through a plug-in 

architecture. The depth and fan-out of the tree are automatically 

adjusted by the GEOPM runtime to accommodate different job sizes.  

Controllers in the tree (and therefore energy management plug-ins) 

take a recursive approach to coordinating energy and performance 

policy decisions globally, across all nodes in the job. The GEOPM root 

controller sets policy for its children, each of its children set policy for 

their children, and so on. Policies are defined hierarchically such that 

the parent constrains the space of policies that its children can select 

from and, in so doing, effects their decisions. Decisions at each level of 

the tree are based on feedback from each child. This feedback consists 

of a history of energy, performance, and other statistics collected over 

the last few control intervals. For scalability, the feedback is aggregated 

as it flows from the leaves toward the root. Thus, decisions at the root 

are informed by feedback from the leaves, and decisions flowing down 

the tree effect decisions made at each leaf.  

To help controller plug-ins achieve control stability, the GEOPM 

plug-in API includes functions that enable plug-ins at different levels 

of the tree to synchronize using a handshake signal. I.e. the parent waits 

for its children to signal that they are ready for a new policy before 

stepping its controller, and children wait until their controller has 

stabilized before providing the signal to their parents. At the leaf-level, 

GEOPM is designed for sub-millisecond controller reaction times.  

The GEOPM github repository includes an Intel-developed 

controller plug-in as an example of tree-hierarchical control. This plug-

in improves performance in power-capped systems by leveraging 

application-awareness to identify nodes on the critical path in a bulk-

synchronous MPI application and accelerate them by diverting power 

from nodes off of the critical path. The algorithm identifies the critical 

path by tracking and comparing the runtime of the outer 

synchronization loop in each rank over a window of multiple iterations 

of the outer synchronization loop. At the leaf controllers, this 

information is obtained from the software interface described in Section 

A. Runtime is aggregated as it flows up the tree: each controller reports 

its runtime as the max runtime of its children. Each controller takes in 

a power budget from its parent and computes (based on the runtime 

reported by the children) how to divide that budget among its children 

such that all sub-trees will reach the end of the outer synchronization 

loop at the same time, avoiding wait times and associated performance 

loss. At the leaf controllers, power and performance are adjusted 

through the use of processor RAPL hardware controls. The overall 

power cap for the job is enforced recursively, with RAPL enforcing the 

cap at the compute node level.  

All GEOPM controllers run in the compute nodes of the job. Each 

compute node runs one of GEOPM’s leaf agents, some compute nodes 

also run an intermediate level of the tree, and one also runs the root of 

the tree. Dynamic communication between levels of the tree is currently 

achieved using MPI over the application’s in-band network fabric. For 

scalability, we use MPI’s Cartesian topology functionality to map 

GEOPM’s control tree hierarchy to compute nodes in a way that makes 

the communication between levels of the tree efficient and balances the 

control tree across compute nodes. Our studies of the overhead 

introduced by GEOPM communications on OmniPath in-band network 

fabrics suggest that bandwidth use will be much less than 1% of the 

total bandwidth, but GEOPM may support out-of-band communication 

in the future nonetheless, if desired. 

Inter-process shared memory is used both for dynamic 

communication between the root of the GEOPM control tree hierarchy 
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and the power-aware scheduler and communication between the leaf 

controllers and the software running on the compute nodes. Over time, 

the interface to software will be hardened for security. Communication 

between the leaf controllers and the processors is achieved through 

access of Model Specific Registers (MSRs) [13] via the msr-safe Linux 

driver developed by LLNL [8].  

While it is not GEOPM’s only supported mode of operation, the 

preferred mode of operation is to run all controllers in one reserved core 

on each compute node. I.e. the application and GEOPM are affinitized 

such that the application does not run on GEOPM’s core. The overhead 

of reserving a core is inexpensive relative to the benefits because HPC 

processors have many cores. The reserved core architecture affords 

GEOPM plug-ins the computational bandwidth of an entire core so that 

they can react quickly to phases and perform deep analysis of 

applications and tradeoffs.   

C. GEOPM Extensible Controller Plug-In Architecture 

A detailed description of GEOPM’s plug-in architecture and a 

developer’s guide for creating plug-ins is available but outside the 

scope of this paper. You can obtain the information in [7].  

IV. FIRST RESULTS 

We demonstrate the potential of the GEOPM framework by 
developing a power-balancing plug-in (described in prior sections) 
which improves performance in power-capped systems for bulk-
synchronous MPI applications by accelerating their critical path. We 
present our first evaluations of this plug-in, beginning with a description 
of our experimental setup followed by initial results and analysis.  

A. Experimental Setup 

We performed our experiments on a Knights Landing cluster. See 
the table summarizing its configuration. When configuring workloads, 
we applied standard conventions. We sized the problem to use the 
majority of the MCDRAM (on-package memory) in each node. We 
used one hardware thread per core (no Simultaneous Multithreading). 
With the system not power-capped – i.e. with the processors allowed to 
run at Thermal Design Power (TDP) – a we swept over the different 
numbers of MPI ranks and OpenMP threads per rank using up all or 
almost all of the available cores; we then determined which 
configuration resulted in the best runtime and used this configuration in 
all evaluations of our power balancing plug-in. 

To study how much application speedup our power-balancing plug-
in provides in power-constrained systems, we swept over a range of job 
power caps and compared the workload runtime achieved while using 
our inter-node power-balancing plug-in versus a baseline. Our power-
balancing plug-in dynamically reallocates the job power budget among 
nodes to mitigate load imbalance while the baseline applies a static 

uniform division of the job power budget among nodes. In the baseline, 
all controllers above the leaf level of the tree are inactive. However, 
both cases employ active controllers at the leaf level of the tree to 
enforce the node-level power budgets.  

The leaves enforce the budget as follows: they dynamically 
measure the power consumed in the external DRAM via the processor 
RAPL feature, they subtract this power from the node budget (obtained 
from their parents in the GEOPM control tree hierarchy), and then they 
set the RAPL socket power limit equal to the remaining power so that 
the sum of socket and external DRAM power matches the node power 
budget. Node power budgets are defined in terms of the dynamic power 
controllable via the processor RAPL feature. The remainder is not 
included but it is approximately static. 

Knights Landing Xeon Phi Cluster 

Hardware Configuration Software Environment 

12x KNL-F nodes B0 Beta SKU 
CentOS 7, ‘performance’ frequency 

governor 

64x4=256 HW threads per node 
NPB FT, NPB miniFE, CORAL 

Nekbone workloads 

16GB MCDRAM, 256GB DRAM per node 
Workloads instrumented with GEOPM 

APIs 

Integrated OmniPath HFI, OmniPath Fabric Workloads run on 56 cores 

Turbo enabled, 1.3GHz sticker frequency GEOPM and OS services run on 1 core 

230W TDP processors >10 runs performed per data point 

  

The load imbalance exhibited in the workloads under study derives 
from the effects of hardware manufacturing variation. The workloads 
are configured with equal work per rank, so the load imbalance is not 
due to work imbalance. The effects of manufacturing variation on load 
imbalance are well known after 4 years of study by the authors of this 
paper internally at Intel and publications in the literature [9, 10]. When 
interpreting the results in this paper, it is important to note that the 
authors made no attempt to cherry-pick processors from extreme ends 
of the manufacturing quality distribution for a given bin. Therefore, it 
is not yet known if the processors in our cluster reflect the full potential 
for load imbalance (though we will explore this in future work). It may 
be possible for our power balancer plug-in to achieve higher speedups 
in systems with processors with higher manufacturing variation.  

In our power cap sweep experiments, we set the max job power cap 
equal to the power each workload naturally consumes when processors 
are uncapped, and we set the min job power cap to the value at which 
performance scaling hit an inflection point; i.e.: where performance 
began degrading precipitously relative to the power reduction. Results 
at power caps below this inflection point may be meaningful in some 
research scenarios but they are omitted from this paper for brevity.  

Figure 3: Runtime Improvements Obtained with GEOPM Power Balancing Plug-in on a 12-Node Knights Landing Cluster 



 

B. Evaluation of the Power Balancing Plug-In 

Figure 3 shows the runtime improvements obtained by our power 
balancing plug-in over a range of job power caps for the NAS Parallel 
Benchmarks FFT and miniFE workloads [11] and the CORAL 
Nekbone workload. Nekbone is a thermal hydraulics code and a Tier 1 
scalable science workload in the CORAL procurement benchmarks 
[12]. We added mark up to these workloads to enable tuning them with 
the plug-in. The modifications are available in [7]. In the figure, the 
lighter colored bars are the results with our power balancer plug-in, and 
lower values are better. Runtimes are normalized.  

As the figure indicates, our power balancing algorithm is able to 
provide substantial runtime improvements of up to 32%. The amount 
of improvement varies depending on the power cap and the workload, 
but it tends to increase as the job power is increasingly constrained since 
the critical path can be operated at a higher and higher frequency 
relative to the other nodes. At the right side of each graph, job power is 
not very constrained and the nodes have enough power to run at closer 
to full frequency, so the critical path cannot be accelerated. In all 
experiments, we note that we confirmed that the power balancing plug-
in obtains its runtime improvements without going over the job power 
budget. We also note that, in other clusters, the improvements may vary 
if the processors exhibit differing amounts of manufacturing variation 
than seen in our cluster. As described above, we have not yet 
determined if the processors in our cluster exhibit the maximum range, 
so the maximum runtime improvements that a GEOPM user may obtain 
from the power balancing plug-in may exceed 32% on some clusters.  

Next, we trace the action of the power balancing algorithm over the 
course of a run to show how the runtime improvements were obtained. 
In Figure 4, we show an example from a run of the Nekbone workload 
at one of the power caps studied in our sweeps. For brevity, we omit 
results collected for FFT and miniFE, but we note that we observed 
consistent trends in that data. The top plot shows the normalized 
runtime of each iteration of the Nekbone outer loop in the critical path 

node (i.e.: the node with lowest manufacturing quality). In the bottom 
plot, we plot the power allocated to each node for each iteration of the 
outer loop. These runtime and power traces were collected through 
GEOPM’s tracing features. Together, the plots show that the power 
balancing plug-in minimizes the runtime of the outer loop by 
identifying the critical path node and allocating it a larger portion of the 
job power budget.  

The data in the top plot exhibits two phases. In the first phase, the 
runtime of the outer loop is slightly better than the baseline runtime 
when using the power balancer plug-in, but in the second phase the 
power balancer significantly improves the runtime. The two phases can 
be explained by observing that the Nekbone benchmark executes two 
conjugate gradient computations of different problem sizes. The second 
one is more sensitive to manufacturing variation because it is more 
compute-intensive. Thus, it offers more opportunity for acceleration. 

In the bottom plot, the trace confirms that the power balancer plug-
in is responding to differences in the outer loop runtime across nodes. 
In particular, Node 1 is allocated more power. This is expected based 
on additional experiments we performed to confirm that Node 1 has the 
processor with the lowest manufacturing quality in our cluster. We also 
note that the data demonstrates that our plug-in adapts readily when 
Nekbone moves from the first conjugate gradient computation to the 
second. When the second begins, the plug-in realizes that the previous 
power allocation is no longer ideal and it learns a new power allocation. 

V. CONCLUSIONS AND FUTURE WORK 

This paper introduced an open source, extensible, scalable runtime 

framework called GEOPM. GEOPM is being contributed to the 

community to accelerate collaboration and research toward software-

hardware co-designed HPC energy management solutions. To 

demonstrate GEOPM’s potential as a framework, this paper developed 

an experimental power balancing plug-in for GEOPM. We shared 

results from an initial evaluation of that plug-in which demonstrated 

substantial speedups for key CORAL system procurement benchmarks 

in power-capped systems.  

In future work, the authors will expand upon their initial studies of 

the power balancer plug-in to a) determine bounds on how much benefit 

the plug-in will provide in systems containing processors representing 

all points in the manufacturing quality distribution for a given bin, b) 

evaluate benefits on additional benchmarks, and c) demonstrate that the 

plug-in’s tree-hierarchical algorithm scales as well as expected in larger 

systems. In fact, the first scaling studies have already begun through a 

collaboration with LLNL.  

Lastly, the promising initial results presented in this paper motivate 

future work to spin up additional collaborations with the community to 

research new energy optimization strategies through GEOPM’s plug-in 

framework. It would be especially interesting to target optimizations 

that run in conjunction with power balancing optimizations to achieve 

speedups and energy efficiency improvements on top of the benefits of 

power balancing. The GEOPM team is also seeking collaborations to a) 

explore further integration of GEOPM with emerging power-aware 

scheduling functions in SLURM (or other workload managers) and b) 

explore tuning power-performance knobs in software libraries/runtimes 

like MPI or OpenMP or knobs in the application layer of the HPC stack.  
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Figure 4: Traces of Outer Loop Runtime and Node Power Allocation 
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