
Global Extensible Open Power Manager: A Vehicle for

HPC Community Collaboration Toward Co-Designed

Energy Management Solutions

Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Federico Ardanaz, Brad Geltz, Asma Al-Rawi, Fuat Keceli, and Kelly Livingston

Power Pathfinding to Product (P3) Team, Advanced Development Strategy and Execution, Data Center Group, Intel Corporation

{jonathan.m.eastep, steve.s.sylvester, christopher.m.cantalupo, federico.ardanaz, brad.geltz, asma.h.al-rawi, fuat.keceli, kelly.a.livingston}@intel.com

Abstract—Performance of future large-scale HPC systems will

be limited by costs associated with scaling power. Some HPC

centers are reaching the limits of their existent site power delivery

infrastructure and are facing prohibitive upgrade costs. Others

are reaching budgetary limits on their energy operating costs.

Without a breakthrough in energy efficiency, the HPC industry

may fail to maintain historical performance scaling rates and fall

short of 2018-2020 Exascale performance goals by an estimated 2-

3x margin. Overcoming this gap will require co-designed

hardware and software system energy management solutions and

increased collaboration between hardware vendors and the HPC

software community. In this work, we introduce the Global

Extensible Open Power Manager (GEOPM): a tree-hierarchical,

plug-in extensible, open source runtime framework that we are

contributing to the HPC community to accelerate collaboration

and research toward co-designed energy management solutions.

First results with an experimental power rebalancing optimization

demonstrate up to 32% improvements in the runtime of CORAL

system procurement benchmarks like miniFE and Nekbone in a

power-limited Xeon Phi cluster. These promising initial results

motivate further work with the community to extend GEOPM to

new optimization strategies to achieve further speedups.

Keywords—runtime systems; scalability; control systems;

tuning; power management; RAPL; P-states; DVFS; resource

management; power-aware scheduling; performance optimization

I. INTRODUCTION

Performance of future large-scale HPC systems will be limited by
costs associated with scaling power. Some HPC centers are reaching
the limits of their existent site power delivery infrastructure and are
facing prohibitive upgrade costs. Others are reaching budgetary limits
on their energy operating costs [14]. Without a breakthrough in energy
efficiency, the HPC industry may fail to maintain historical
performance scaling rates and fall short of 2018-2020 Exascale
performance goals by an estimated 2-3x gap [15].

This estimate of a 2-3x gap assumes the continued success of
existing scaling techniques like shrinking transistor features, improving
hardware architecture, and increasing integration of system
components. These are hardware-centric techniques for scaling
performance. Even if existing techniques are fully successful,
overcoming the remaining 2-3x gap will require going beyond
hardware-centric techniques and co-designing next-generation
solutions with the HPC software community.

In this work, we introduce the Global Extensible Open Power
Manager (GEOPM): a tree-hierarchical, plug-in extensible, open source
runtime framework that we are contributing to the HPC community to
accelerate collaboration and research toward co-designed energy
management solutions. This paper is the result of 4 years of research
and development within the GEOPM project and a preceding project

internal to Intel by a subset of the same authors. This work makes three
primary contributions:

 This work provides a scalable runtime for global optimization of
power and performance control knobs across all compute nodes in
a job. GEOPM’s tree-hierarchical design and control algorithms
enable scalable coordination of energy management decisions
across nodes for better results than prior node-local approaches
have obtained. Furthermore, the flexibility of its tree-hierarchical
design makes GEOPM suitable for a wide range of deployments,
spanning from rack-scale to Exascale deployments.

 This work contributes GEOPM to the community as an open source,
extensible framework to accelerate research of new HPC energy
management solutions. GEOPM provides a plug-in architecture
enabling researchers, developers, hardware vendors, or HPC site
administrators to add new optimization strategies to GEOPM or
enable it to target new control knobs in the software or hardware
layers. Via plug-ins, GEOPM’s objective can range from finding
the knob settings that minimize job runtime within a job power cap
to finding settings that reach a custom tradeoff between runtime and
power. In future work, the authors of this paper will examine select
community plug-ins and research ways to co-design Intel hardware
features for even better results with those plug-ins.

 This work explores a new energy management algorithm as a plug-
in for GEOPM that guides the hardware to more effective use of
limited power for significant performance improvements. To obtain
these improvements, the plug-in leverages application-awareness to
identify compute nodes on the critical path in an MPI job then
diverts power from nodes off of the critical path to accelerate the
critical path nodes. Power and performance are adjusted via RAPL
[13] hardware controls. To our knowledge, our power rebalancing
techniques are the first to integrate hierarchical algorithms intended
for deployment at scale in TOP500 systems.

Figure 1: GEOPM Interfaces and HPC System Stack Integration

Workload Manager

Job Energy
Manager =

GEOPM Runtime

User
Interface

Processor Power/Perf
Monitors & Controls

Power-Aware
Scheduler

Workload Manager
Interface

Software
Interface

Admin
Interface

App

libs

3
rd

 Party SW Components
GEOPM SW Components
HW Components

The GEOPM runtime framework is being developed with the intent
of deployment on the Argonne CORAL Theta system (Knights Landing
Xeon Phi) and other future Xeon and Xeon Phi systems. First results
with the experimental power rebalancing optimization demonstrate up
to 32% improvements in the runtime of CORAL system procurement
benchmarks like miniFE and Nekbone in a power-limited Xeon Phi
cluster. These promising initial results motivate further work with the
community to extend GEOPM’s optimizations for further speedups.

The GEOPM software package is available under the BSD three
clause open source software license in the GEOPM source code
repository on github (project page: geopm.github.io/geopm). The
GEOPM runtime framework, test infrastructure, and Intel-developed
power rebalancing plug-in are all open source. Over time, the code will
be further hardened for deployment in production systems.

II. RELATED WORK

To our knowledge, GEOPM is the first open extensible runtime
framework to be contributed to the community by a hardware vendor
with the intent of collaborative research toward software-hardware co-
designed energy management solutions in future HPC systems. While
there are parallel co-design efforts such as OpenPOWER [17] which
seek to enable the community to customize systems based on the IBM
POWER architecture, we are not aware of any specific efforts within
the OpenPOWER project to research co-designed energy management
solutions. While GEOPM only currently provides plug-ins supporting
x86 systems, users can develop and add plug-ins supporting POWER
or other system architectures.

To our knowledge, GEOPM is the first open source job-level
energy management runtime for HPC systems to support extensible
energy management control strategies through a plug-in architecture,
making it suitable for the differing energy management needs of a wide
range of HPC installations around the world. The Power API
Specification from Sandia [16] is a synergistic effort, but it is an
orthogonal effort because it emphasizes power interfaces rather than
runtime techniques for optimizing energy. The Power API project is
defining community-standard interfaces for power monitoring and
control at various granularities throughout the HPC stack. Runtimes
like GEOPM and other components can collectively target these
interfaces to achieve interoperability. Sandia and the GEOPM team are
collaborating to explore changes targeted at future releases of the
specification to increase support for GEOPM and its interfaces.

In this work, we develop a plug-in for GEOPM for power
rebalancing at the job level. Prior works such as Conductor [1], Adagio
[2], and Jitter [3] have demonstrated effective algorithms for
reallocating power between nodes to compensate for application load
imbalance – whether for the purpose of increasing application
performance under a job power cap by accelerating the critical path or
improving application energy efficiency by reducing performance in
nodes off of the critical path. While these algorithms are effective at
smaller scales (i.e. less than a few thousand nodes), their centralized
designs are not intended for large-scale deployments or extreme-scale
deployments in future Exascale systems. The key difference is that the
GEOPM power balancer plug-in has a flexible tree-hierarchical design
suitable for deployments ranging in scale from rack-scale to extreme-
scale deployments. We note, however, that we have a collaboration
underway with LLNL and Argonne National Laboratory to compare
approaches and meld together the best aspects of each approach in a
future GEOPM plug-in and paper.

There is a parallel work to GEOPM called the Argo project [24]
which is developing a task-based programming model and runtime for
Exascale HPC systems. Its design includes a hierarchical power
manager. Unlike GEOPM, the Argo power manager is not intended as
a vehicle for the community and hardware vendors to collaborate on
researching new energy management solutions. Furthermore, while the

Argo project envisions this power manager performing automatic
hierarchical power budgeting, that functionality is not complete to our
knowledge. What has been demonstrated is hierarchical enforcement of
power budgets that were adjusted manually at runtime. That said, the
GEOPM team is interested in exploring if Argo’s algorithms could be
implemented as GEOPM plug-ins and brought to fruition in production
deployments through the GEOPM framework.

We note that there have also been orthogonal efforts [25] to develop
hierarchical power management frameworks for enterprise data centers.
They employ significantly different energy management strategies
suitable for enterprise workloads and virtualized environments. There
have been other related works that focused on saving power given a
time bound. Some have used linear programming to optimize energy
savings with nearly no runtime increase [19]. Others have achieved
bigger power savings in exchange for small performance degradations
[20, 21, 22, 23].

Aside from prior works on saving energy while maintaining
performance levels, hierarchical power capping, and rebalancing power
across nodes to increase job performance under a power cap, there have
also been prior works on power-aware scheduling algorithms for energy
management at the system level [4, 5, 6]. These algorithms comprehend
system-level power caps and assign a different power cap to each job
based on its runtime and power characteristics with the goal of reducing
job wait times or optimizing overall system throughput. GEOPM is
synergistic with these works: the intent is for GEOPM to integrate with
a power-aware scheduler in an extended energy management hierarchy.
In particular, the scheduler can view GEOPM as a mechanism for
optimizing the job’s performance or energy efficiency within the
scheduler-specified job power budget, and the scheduler can optimize
system performance and efficiency by deciding the best allocation of
the system budget among concurrent jobs. For maximum benefits,
GEOPM supports dynamic adjustments to the job cap.

III. GEOPM DESIGN OVERVIEW

This section provides an overview of the GEOPM design,
beginning with discussion of how GEOPM integrates into the HPC
system stack. We cover the components that GEOPM interacts with and
the interfaces it provides for interaction with those components. Then,
we describe GEOPM’s scalable tree-hierarchical design. We cover
GEOPM’s hierarchical control algorithms and the mechanisms it uses
for communication throughout its control hierarchy, communication
with software layers, and communication with the hardware. Finally,
we provide references to developer documentation describing how to
use GEOPM’s interfaces and write plug-ins for GEOPM.

A. GEOPM Interfaces and Integration Architecture

 Figure 1 illustrates how the GEOPM runtime fits into the HPC
system stack. GEOPM is a job-level energy manager. It runs in
userspace. The GEOPM runtime interacts with the scheduling functions
of the workload manager through the workload manager interface. This
interface lets future power-aware schedulers assign a power cap for the
job and configure which energy management plug-in GEOPM should
use to manage the job. It also allows GEOPM to report back how much
power the job consumed and statistics about the job that GEOPM has
collected. There is an option for the interface to be used at job start and
finish (statically) or periodically while the job is running (dynamically).

There is also an interface to the application software or libraries
(shown at the middle right of the figure). This software interface allows
the programmer to mark up their code and hint to GEOPM about global
synchronization events in the application that could result in
performance loss if some MPI ranks fall behind in the computation and
reach the synchronization point late. The interface also enables

file:///C:/Users/jmeastep/Documents/Work%20Related/Exascale/my-documents/auto-tuner%20work/CORAL%20Auto-Tuner%20NRE/publications/geopm.github.io/geopm

programmers to hint to GEOPM about regions (i.e. phases) in the
application or library code between synchronization events and provide
an application-level performance signal that GEOPM plug-ins can use
to adapt their decisions as the application transitions between phases.

For example, a GEOPM plug-in may adjust the P-state of the cores
as the application alternates between compute-intensive, memory-
intensive, and communication-intensive phases, decreasing frequency
in memory- or communication-intensive phases to save power. The
software interface is lightweight and minimally invasive, but future
work will explore methods of automatically inferring phase and
performance information to enable GEOPM usages where applications
require zero markup to use any plug-ins that make per-phase decisions.

Other future work on the software interfaces will explore
extensions to enable application or library developers to express tunable
knobs in the software layers of the system to GEOPM for dynamic
tuning. Examples may include the choice of how many threads to
employ in OpenMP parallel regions, the choice of heuristics employed
by the MPI and OpenMP libraries, or traditional application-level auto-
tuning knobs such as the choice of algorithm, cache blocking factor, etc.

The GEOPM team has also been exploring how administrators and
users may want to interact with job-level power managers, and those
interactions will be achieved through the user and admin interfaces. The
user interface enables users to request that GEOPM use a specific
energy management plug-in for the job. This user interface may be
implemented using multiple methods. One method is to wrap the
SLURM srun queue command (or equivalent queue commands
provided by other workload managers). The admin interface enables the
administrator to provide a default selection for the GEOPM plug-in.

A detailed description of GEOPM’s interfaces is available but
outside the scope of this paper. In addition to interface specifications
for developers, we also provide tutorials and example MPI applications
in the GEOPM source code repository illustrating how to use the
interfaces. See [7] for the documentation and tutorials. Video
walkthroughs of the tutorials are also available on YouTube [18].

B. GEOPM Scalable Tree-Hierarchical Design

GEOPM is designed to scale for deployment on systems ranging in

size from a single rack to an Exascale system with over 100,000

compute nodes. This is accomplished through a flexible tree-

hierarchical design. As illustrated in Figure 2, the GEOPM runtime is

implemented as a tree hierarchy of controllers. It is a feedback-guided

tree-hierarchical control system. The energy management strategy

employed by each controller in the tree is extensible through a plug-in

architecture. The depth and fan-out of the tree are automatically

adjusted by the GEOPM runtime to accommodate different job sizes.

Controllers in the tree (and therefore energy management plug-ins)

take a recursive approach to coordinating energy and performance

policy decisions globally, across all nodes in the job. The GEOPM root

controller sets policy for its children, each of its children set policy for

their children, and so on. Policies are defined hierarchically such that

the parent constrains the space of policies that its children can select

from and, in so doing, effects their decisions. Decisions at each level of

the tree are based on feedback from each child. This feedback consists

of a history of energy, performance, and other statistics collected over

the last few control intervals. For scalability, the feedback is aggregated

as it flows from the leaves toward the root. Thus, decisions at the root

are informed by feedback from the leaves, and decisions flowing down

the tree effect decisions made at each leaf.

To help controller plug-ins achieve control stability, the GEOPM

plug-in API includes functions that enable plug-ins at different levels

of the tree to synchronize using a handshake signal. I.e. the parent waits

for its children to signal that they are ready for a new policy before

stepping its controller, and children wait until their controller has

stabilized before providing the signal to their parents. At the leaf-level,

GEOPM is designed for sub-millisecond controller reaction times.

The GEOPM github repository includes an Intel-developed

controller plug-in as an example of tree-hierarchical control. This plug-

in improves performance in power-capped systems by leveraging

application-awareness to identify nodes on the critical path in a bulk-

synchronous MPI application and accelerate them by diverting power

from nodes off of the critical path. The algorithm identifies the critical

path by tracking and comparing the runtime of the outer

synchronization loop in each rank over a window of multiple iterations

of the outer synchronization loop. At the leaf controllers, this

information is obtained from the software interface described in Section

A. Runtime is aggregated as it flows up the tree: each controller reports

its runtime as the max runtime of its children. Each controller takes in

a power budget from its parent and computes (based on the runtime

reported by the children) how to divide that budget among its children

such that all sub-trees will reach the end of the outer synchronization

loop at the same time, avoiding wait times and associated performance

loss. At the leaf controllers, power and performance are adjusted

through the use of processor RAPL hardware controls. The overall

power cap for the job is enforced recursively, with RAPL enforcing the

cap at the compute node level.

All GEOPM controllers run in the compute nodes of the job. Each

compute node runs one of GEOPM’s leaf agents, some compute nodes

also run an intermediate level of the tree, and one also runs the root of

the tree. Dynamic communication between levels of the tree is currently

achieved using MPI over the application’s in-band network fabric. For

scalability, we use MPI’s Cartesian topology functionality to map

GEOPM’s control tree hierarchy to compute nodes in a way that makes

the communication between levels of the tree efficient and balances the

control tree across compute nodes. Our studies of the overhead

introduced by GEOPM communications on OmniPath in-band network

fabrics suggest that bandwidth use will be much less than 1% of the

total bandwidth, but GEOPM may support out-of-band communication

in the future nonetheless, if desired.

Inter-process shared memory is used both for dynamic

communication between the root of the GEOPM control tree hierarchy

MPI Comms Overlay

Shared Mem Region

Power-Aware
Scheduler

GEOPM Controller

SHM

GEOPM GEOPM Root

GEOPM
Aggregator

GEOPM
Aggregator

GEOPM Leaf

Msr-safe Driver MSR

MPI Ranks
0 to i-1

GEOPM Leaf

Processor

MPI Ranks
i to j-1

Processor

MPI Ranks
j to k-1

GEOPM Leaf

Processor

MPI Ranks
k to n-1

GEOPM Leaf

Processor

Figure 2: GEOPM Hierarchical Design and Communication

Mechanisms

and the power-aware scheduler and communication between the leaf

controllers and the software running on the compute nodes. Over time,

the interface to software will be hardened for security. Communication

between the leaf controllers and the processors is achieved through

access of Model Specific Registers (MSRs) [13] via the msr-safe Linux

driver developed by LLNL [8].

While it is not GEOPM’s only supported mode of operation, the

preferred mode of operation is to run all controllers in one reserved core

on each compute node. I.e. the application and GEOPM are affinitized

such that the application does not run on GEOPM’s core. The overhead

of reserving a core is inexpensive relative to the benefits because HPC

processors have many cores. The reserved core architecture affords

GEOPM plug-ins the computational bandwidth of an entire core so that

they can react quickly to phases and perform deep analysis of

applications and tradeoffs.

C. GEOPM Extensible Controller Plug-In Architecture

A detailed description of GEOPM’s plug-in architecture and a

developer’s guide for creating plug-ins is available but outside the

scope of this paper. You can obtain the information in [7].

IV. FIRST RESULTS

We demonstrate the potential of the GEOPM framework by
developing a power-balancing plug-in (described in prior sections)
which improves performance in power-capped systems for bulk-
synchronous MPI applications by accelerating their critical path. We
present our first evaluations of this plug-in, beginning with a description
of our experimental setup followed by initial results and analysis.

A. Experimental Setup

We performed our experiments on a Knights Landing cluster. See
the table summarizing its configuration. When configuring workloads,
we applied standard conventions. We sized the problem to use the
majority of the MCDRAM (on-package memory) in each node. We
used one hardware thread per core (no Simultaneous Multithreading).
With the system not power-capped – i.e. with the processors allowed to
run at Thermal Design Power (TDP) – a we swept over the different
numbers of MPI ranks and OpenMP threads per rank using up all or
almost all of the available cores; we then determined which
configuration resulted in the best runtime and used this configuration in
all evaluations of our power balancing plug-in.

To study how much application speedup our power-balancing plug-
in provides in power-constrained systems, we swept over a range of job
power caps and compared the workload runtime achieved while using
our inter-node power-balancing plug-in versus a baseline. Our power-
balancing plug-in dynamically reallocates the job power budget among
nodes to mitigate load imbalance while the baseline applies a static

uniform division of the job power budget among nodes. In the baseline,
all controllers above the leaf level of the tree are inactive. However,
both cases employ active controllers at the leaf level of the tree to
enforce the node-level power budgets.

The leaves enforce the budget as follows: they dynamically
measure the power consumed in the external DRAM via the processor
RAPL feature, they subtract this power from the node budget (obtained
from their parents in the GEOPM control tree hierarchy), and then they
set the RAPL socket power limit equal to the remaining power so that
the sum of socket and external DRAM power matches the node power
budget. Node power budgets are defined in terms of the dynamic power
controllable via the processor RAPL feature. The remainder is not
included but it is approximately static.

Knights Landing Xeon Phi Cluster

Hardware Configuration Software Environment

12x KNL-F nodes B0 Beta SKU
CentOS 7, ‘performance’ frequency

governor

64x4=256 HW threads per node
NPB FT, NPB miniFE, CORAL

Nekbone workloads

16GB MCDRAM, 256GB DRAM per node
Workloads instrumented with GEOPM

APIs

Integrated OmniPath HFI, OmniPath Fabric Workloads run on 56 cores

Turbo enabled, 1.3GHz sticker frequency GEOPM and OS services run on 1 core

230W TDP processors >10 runs performed per data point

The load imbalance exhibited in the workloads under study derives
from the effects of hardware manufacturing variation. The workloads
are configured with equal work per rank, so the load imbalance is not
due to work imbalance. The effects of manufacturing variation on load
imbalance are well known after 4 years of study by the authors of this
paper internally at Intel and publications in the literature [9, 10]. When
interpreting the results in this paper, it is important to note that the
authors made no attempt to cherry-pick processors from extreme ends
of the manufacturing quality distribution for a given bin. Therefore, it
is not yet known if the processors in our cluster reflect the full potential
for load imbalance (though we will explore this in future work). It may
be possible for our power balancer plug-in to achieve higher speedups
in systems with processors with higher manufacturing variation.

In our power cap sweep experiments, we set the max job power cap
equal to the power each workload naturally consumes when processors
are uncapped, and we set the min job power cap to the value at which
performance scaling hit an inflection point; i.e.: where performance
began degrading precipitously relative to the power reduction. Results
at power caps below this inflection point may be meaningful in some
research scenarios but they are omitted from this paper for brevity.

Figure 3: Runtime Improvements Obtained with GEOPM Power Balancing Plug-in on a 12-Node Knights Landing Cluster

B. Evaluation of the Power Balancing Plug-In

Figure 3 shows the runtime improvements obtained by our power
balancing plug-in over a range of job power caps for the NAS Parallel
Benchmarks FFT and miniFE workloads [11] and the CORAL
Nekbone workload. Nekbone is a thermal hydraulics code and a Tier 1
scalable science workload in the CORAL procurement benchmarks
[12]. We added mark up to these workloads to enable tuning them with
the plug-in. The modifications are available in [7]. In the figure, the
lighter colored bars are the results with our power balancer plug-in, and
lower values are better. Runtimes are normalized.

As the figure indicates, our power balancing algorithm is able to
provide substantial runtime improvements of up to 32%. The amount
of improvement varies depending on the power cap and the workload,
but it tends to increase as the job power is increasingly constrained since
the critical path can be operated at a higher and higher frequency
relative to the other nodes. At the right side of each graph, job power is
not very constrained and the nodes have enough power to run at closer
to full frequency, so the critical path cannot be accelerated. In all
experiments, we note that we confirmed that the power balancing plug-
in obtains its runtime improvements without going over the job power
budget. We also note that, in other clusters, the improvements may vary
if the processors exhibit differing amounts of manufacturing variation
than seen in our cluster. As described above, we have not yet
determined if the processors in our cluster exhibit the maximum range,
so the maximum runtime improvements that a GEOPM user may obtain
from the power balancing plug-in may exceed 32% on some clusters.

Next, we trace the action of the power balancing algorithm over the
course of a run to show how the runtime improvements were obtained.
In Figure 4, we show an example from a run of the Nekbone workload
at one of the power caps studied in our sweeps. For brevity, we omit
results collected for FFT and miniFE, but we note that we observed
consistent trends in that data. The top plot shows the normalized
runtime of each iteration of the Nekbone outer loop in the critical path

node (i.e.: the node with lowest manufacturing quality). In the bottom
plot, we plot the power allocated to each node for each iteration of the
outer loop. These runtime and power traces were collected through
GEOPM’s tracing features. Together, the plots show that the power
balancing plug-in minimizes the runtime of the outer loop by
identifying the critical path node and allocating it a larger portion of the
job power budget.

The data in the top plot exhibits two phases. In the first phase, the
runtime of the outer loop is slightly better than the baseline runtime
when using the power balancer plug-in, but in the second phase the
power balancer significantly improves the runtime. The two phases can
be explained by observing that the Nekbone benchmark executes two
conjugate gradient computations of different problem sizes. The second
one is more sensitive to manufacturing variation because it is more
compute-intensive. Thus, it offers more opportunity for acceleration.

In the bottom plot, the trace confirms that the power balancer plug-
in is responding to differences in the outer loop runtime across nodes.
In particular, Node 1 is allocated more power. This is expected based
on additional experiments we performed to confirm that Node 1 has the
processor with the lowest manufacturing quality in our cluster. We also
note that the data demonstrates that our plug-in adapts readily when
Nekbone moves from the first conjugate gradient computation to the
second. When the second begins, the plug-in realizes that the previous
power allocation is no longer ideal and it learns a new power allocation.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced an open source, extensible, scalable runtime

framework called GEOPM. GEOPM is being contributed to the

community to accelerate collaboration and research toward software-

hardware co-designed HPC energy management solutions. To

demonstrate GEOPM’s potential as a framework, this paper developed

an experimental power balancing plug-in for GEOPM. We shared

results from an initial evaluation of that plug-in which demonstrated

substantial speedups for key CORAL system procurement benchmarks

in power-capped systems.

In future work, the authors will expand upon their initial studies of

the power balancer plug-in to a) determine bounds on how much benefit

the plug-in will provide in systems containing processors representing

all points in the manufacturing quality distribution for a given bin, b)

evaluate benefits on additional benchmarks, and c) demonstrate that the

plug-in’s tree-hierarchical algorithm scales as well as expected in larger

systems. In fact, the first scaling studies have already begun through a

collaboration with LLNL.

Lastly, the promising initial results presented in this paper motivate

future work to spin up additional collaborations with the community to

research new energy optimization strategies through GEOPM’s plug-in

framework. It would be especially interesting to target optimizations

that run in conjunction with power balancing optimizations to achieve

speedups and energy efficiency improvements on top of the benefits of

power balancing. The GEOPM team is also seeking collaborations to a)

explore further integration of GEOPM with emerging power-aware

scheduling functions in SLURM (or other workload managers) and b)

explore tuning power-performance knobs in software libraries/runtimes

like MPI or OpenMP or knobs in the application layer of the HPC stack.

VI. ACKNOWLEDGMENTS

The authors would like to thank the following individuals for their
input on this work: Vitali Morozov and Kumar Kalyan of Argonne;
Barry Rountree and Martin Schulz of LLNL; James Laros and team
from Sandia; and Richard Greco (retired), Tryggve Fossum (retired),
David Lombard, Michael Patterson, and Alan Gara of Intel.

Figure 4: Traces of Outer Loop Runtime and Node Power Allocation

VII. REFERENCES

[1] A. Marathe, P. E. Bailey, D. K. Lowenthal, B. Rountree, M.
Schulz, B. de Supinski. A Run-Time System for Power-
Constrained HPC Applications. In ISC, 2015.

[2] B. Rountree, D. K. Lowenthal, B. de Supinski, M. Schulz, and V.
W. Freeh. Adagio: Making DVS Practical for Complex HPC
Applications. In ICS, 2009.

[3] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in Time
Dynamic Voltage Scaling: Exploiting Inter-Node Slack to Save
Energy in MPI Programs. In Supercomputing, Nov. 2005.

[4] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Optimizing
Job Performance Under a Given Power Constraint in HPC
Centers. In IGCC, 2010.

[5] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Linear
Programming Based Parallel Job Scheduling for Power
Constrained Systems. In HPCS, 2011.

[6] O. Sarood, A. Langer, A. Gupta, and L. Kale. Maximizing
Throughput of Overprovisioned HPC Data Centers Under a Strict
Power Budget. In Supercomputing, 2014.

[7] Global Extensible Open Power Manager project url,
http://geopm.github.io/geopm/. Hillsboro, OR: Intel Corporation,
September 2016.

[8] K. Shoga, B. Rountree, M. Schulz, and J. Shafer. Whitelisting
MSRs with msr-safe, in 3rd Workshop on Exascale Systems
Programming Tools, in conjunction with SC14, 2014.

[9] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and
M. Schulz. Beyond DVFS: A first Look at Performance Under a
Hardware-Enforced Power Bound. In HPPAC, 2012.

[10] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M.
Schulz, D. K. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, M.
Kondo, and I. Miyoshi. Analyzing and Mitigating the Impact of
Manufacturing Variability in Power-Constrained
Supercomputing. In Supercomputing, 2015.

[11] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L.
Dagum, R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, et
al. The NAS Parallel Benchmarks Summary and Preliminary
Results. In Supercomputing, pages 158–165, 1991.

[12] CORAL Procurement Benchmarks. https://asc.llnl.gov/CORAL-
benchmarks/CORALBenchmarksProcedure-v26.pdf, September
2016.

[13] Intel. Intel-64 and IA-32 Architectures Software Developer’s
Manual, Volumes 3A and 3B: System Programming Guide,
December 2011.

[14] J. Shalf, S. Dosanjh, and J. Morrison. Exascale Computing
Technology Challenges. In VECPAR, 2010.

[15] A. Sodani. Race to Exascale: Opportunities and Challenges.
MICRO 2011 Keynote address.

[16] J. Laros, D. DeBonis, R. Grant, S. Kelly, M. Levenhagen, S.
Olivier, and K. Pedretti. High Performance Computing - Power
Application Programming Interface Specification, Version 1.0,
Sandia National Laboratories, Technical Report SAND2014-
17061, 2014.

[17] M. Gschwind. OpenPOWER: Reengineering a Server Ecosystem
for Large-Scale Data Centers. In Hot Chips Symposium (HCS),
pp. 1-28, 2014.

[18] GEOPM Video Tutorials,
https://www.youtube.com/playlist?list=PLwm-z8c2AbIBU-
T7HnMi_Pux7iO3gQQnz. Hillsboro, OR: Intel Corporation,
September 2016.

[19] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. de
Supinski, and M. Schulz. Bounding Energy Consumption in
Large-Scale MPI Programs. In Supercomputing, Nov. 2007

[20] K. W. Cameron, X. Feng, and R. Ge. Performance-Constrained
Distributed DVS Scheduling for Scientific Applications on
Power-Aware Clusters. In Supercomputing, 2005.

[21] R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU Miser: A
Performance-Directed, Run-Time System for Power-Aware
Clusters. In ICPP, 2007.

[22] C.-H. Hsu and W.-C. Feng. A Power-Aware Run-Time System
for High-Performance Computing. In Supercomputing, Nov.
2005.

[23] D. Li, B. de Supinski, M. Schulz, K. Cameron, and D.
Nikolopoulos. Hybrid MPI/OpenMP Power-Aware Computing.
In IPDPS, 2010.

[24] D. Ellsworth, T. Patki, S. Perarnau, S. Seo, A. Amer, J.
Zounmevo, R. Gupta, K. Yoshii, H. Hoffman, A. Malony, M.
Schulz, P. Beckman. Systemwide Power Management with Argo.
In Parallel and Distributed Processing Symposium Workshops,
May 2016.

[25] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, X. Zhu.
No “Power” Struggles: Coordinated Multi-level Power
Management for the Data Center. In ASPLOS, 2008.

http://geopm.github.io/geopm/
https://asc.llnl.gov/CORAL-benchmarks/CORALBenchmarksProcedure-v26.pdf
https://asc.llnl.gov/CORAL-benchmarks/CORALBenchmarksProcedure-v26.pdf
https://www.youtube.com/playlist?list=PLwm-z8c2AbIBU-T7HnMi_Pux7iO3gQQnz
https://www.youtube.com/playlist?list=PLwm-z8c2AbIBU-T7HnMi_Pux7iO3gQQnz

