
1 

 

ARMv8 Micro-architectural Design Space 

Exploration for High Performance Computing 

using Fractional Factorial 

Roxana Rusitoru 
Systems Research Engineer,  ARM 



2 

 

 Goal:  

  HPC-oriented core (characteristics suitable for HPC) 
 

 Why: 

 ARM’s main focus has been mobile – we have little knowledge of what an ARM HPC core should 

look like 
 

 Who: 

 ARM and partners can make more informed decisions if we/they are to create an HPC-oriented 

core 
 

 How (first step): 

 Use fractional-factorial experimental design to explore micro-architectural features* 

 HPC mini-applications & benchmarks  

 Single core, single thread experiments 
 

* Previously used by Dam Sunwoo et al in “A Structured Approach to the Simulation, Analysis and Characterization of Smartphone 

Applications”  

 

Motivation & background 



3 

 

 This study is… 

 A design space exploration on ARMv8 in-order and out-of-order core configurations to determine 

the sensitivities of HPC applications with respect to micro-architectural changes. 

 

 A way to guide detailed micro-architectural investigations (it can point us in the right direction) 

 

 This study is not… 

 A way to produce an “ideal” core configuration that we can just use to create next-gen HPC cores 

This study 



4 

 

 gem5 

 Event-based simulator used for computer systems architecture research. 

 Can run full-system simulations, with variable levels of detail. 

 Enables the exploration of various new and existing micro-architectural features, whilst running the 

same software stack as real hardware. 
 

 SimPoint 

 Provides a mechanism and methodology for extracting the most representative phases from a given 

workload. 

 Each SimPoint consists of a warm-up period and a region of interest. Their size is given in number of 

instructions. 
 

 Fractional Factorial 

 Relies on sparsity-of-effects principle (only the main and low-order interactions are investigated). 

 This allows for a significant reduction in the number of experiments (fraction of a full factorial).   

 

Infrastructure background  



5 

 

Methodology 

 Select a representative collection of HPC proxy applications and benchmarks 

 Determine gem5-appropriate runtime parameters for those applications 

 Gather and validate SimPoints 

 Determine appropriate micro-architectural parameters and values 

 Run fractional factorial experiments 
 

 

 

 

 

 

 

 

 

 All our experiments are single core, single thread. 

 Figure-of-Merit: IPC 

 

 

 



6 

 

Applications 

 We chose problem sizes such that the total memory footprint is larger than the total maximum size of 

caches. 

 For all applications we only ran the core loops. 

 For most applications, we used 1B instruction SimPoints with 100M instruction warm-up phases. 

 

 

 

 

 

 

 

 

 

 

 

 

HPCG miniFE CoMD 

AArch64 openSUSE HPC image 

Serial Parallel 

CoMD - MPI 

OpenMPI-1.7.3 

Libraries & Tools 

HPCC 

HPCG-MPI 

 Hand-crafted 

DGEMM 

MCB Pathfinder 

GCC-4.9.1 

GCC-4.9.0 



7 

 

What we changed 

 

CPU 

 

 

 

 

 

 

 

 

          Execute Fetch 
L1D 

Cache 
Main 

memory 

Issue Decode 

L1I Cache 

L2 

Cache 

L3 

Cache 

Register File 

Branch 

pred. 

I-TLB D-TLB 

#physical FP/Int regs 

#ALU units,  

FP instruction latency 

 Size, latency, MSHRs, prefetchers etc. 

Address mapping,  

page policy, model, tWR 

Fetch2 to decode delay 

Issue limit to execute stage 

RAS, BTB, global predictor and  

local predictor size 

Size 



8 

 

OoO study – fractional factorial results (ARM Cortex-A57-like model-based) 

 

 

 

L1IC 

 

 

 

L1DC 

 

 

 

L2C 

 

 

 

L3C 

 

 

 

Mem 

 

 

 

Core uArch 



9 

 

 

OoO study – floating-point instruction latency 



10 

 

 

In-order study – fractional factorial results (ARM Cortex-A53-like model-based) 

 

 

 

 

 

L1IC 

 

 

 

 

 

L1DC 

 

 

 

 

 

L2C 

 

 

 

 

 

L3C 

 

 

 

 

 

Mem 

 

 

 

 

 

Core uArch 



11 

 

 

In-order study – front end study 



12 

 

 High sensitivity to latency versus throughput  
 

 For out-of-order cores, there is an increased sensitivity to having more FP physical 

registers 
 

 For out-of-order cores, there is no sensitivity to an increased number of LD/ST/Int 

ALUs 
 

 In-order core shows sensitivity towards L1, L2, L3 prefetchers and memory model 
 

 Little or no sensitivity towards L1, L2, L3 data cache size variations 
 

 Negative sensitivity when changing the page policy 

 

 

 

 

 

 

 
 

 

 

Conclusions 



13 

 

 We investigated single-core configurations of both out-of-order and in-order 

processors 

 This provided us with a good “within core” perspective 

 Latency, and not throughput, matters most 
 

 Further work: 

 Investigation into data cache size sensitivity  

 In-order core prefetcher investigation (on-going) 
 

 Future studies: 

 Multi-core study using multi-threaded applications (on-going) 

 Deep-dive into the memory system (on-going) 

 SMT study 

 

 

 

 

Summary 



14 

 

 We had a methodology in-place for single-core studies, however, is this the best way 

forward? What about multi-core studies? 

 Methodology (speed/accuracy) 
 

 Source and magnitude of sensitivities 
 

 Scalability 
 

 Figure-of-merit – currently IPC 
 

 gem5 
 

 It’s easy to go outside of the expected design space. Great for bug hunting, good for pushing the 

envelope, but is it relevant? 

 

Future considerations 



15 

 

 

Appendix 



16 

 

 

Out-of-order sensitivity study parameters 



17 

 

 

In-order sensitivity study parameters 


