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Answering Questions about Heterogeneous Systems 

• How does one device perform relative to another? 

• In which areas is one accelerator better? 

• How do multiple devices perform (separately or in concert)? 

• How do heterogeneous programming models compare? 

• What’s the most productive way to program a given device? 



SHOC 1.0 
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Scalable Heterogeneous Computing Suite 

• Benchmark suite with a focus on scientific computing workloads 

• Both performance and stability testing 

• Supports clusters and individual hosts 

• intra-node parallelism for multiple GPUs per node 

• inter-node parallelism with MPI 

• Both CUDA and OpenCL 

• Three levels of benchmarks: 

• Level 0: very low-level device characteristics (bus speed, max flops) 

• Level 1: low level algorithmic operations (fft, gemm, sorting, n-body) 

• Level 2: application-level kernels (combustion chemistry, clustering) 

A. Danalis, G. Marin, C. McCurdy, J.S. Meredith, P.C. Roth, K. Spafford, V. Tipparaju, J.S. Vetter 
“The Scalable Heterogeneous Computing (SHOC) Benchmark Suite” 
Third Workshop on General-Purpose Computation on Graphics Processing Units (GPGPU-3), 2010. 

https://github.com/vetter/shoc  

https://github.com/vetter/shoc


SHOC 2.0 
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Recent Additions to SHOC 

• Added new benchmarks 

• Originals focused on floating point, scientific computing applications 

• New benchmarks: machine learning, data analytics, and integer operations 

• Supports new programming models 

• Original supported OpenCL when it was new 

• Allowed CUDA vs OpenCL comparisons 

• Multiple OpenCL implementations could support one platform 

• Tracking maturity of OpenCL over time 

• New programming models support directives 

• OpenACC, OpenMP + offload 

• Better support for multi-core and new devices (Intel Xeon Phi) 

 



New Benchmarks 
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MD5Hash 

• MD5 is a cryptographic hash function 

• Heavy use of integer and bitwise operations 

• No floating point operations  

• Not parallel for a single input string 

• Would be bandwidth-dependent to be useful anyway 

• Instead, do a parallel search for a known, random hash 

• Each thread hashes a large set of short input strings 

• Input strings are generated programmatically from a given key space 

aaaa 74b873374.... 

aaab 4c189b020.... 

aaac 3963a2ba6.... 
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MD5Hash Results 

• Large generational 
improvements for NVIDIA 

• Kepler K40 vs Fermi m2090 
almost 3x 

• Maxwell 750Ti outperforms 
Fermi m2090 

• AMD better overall for 
integer/bit operations 

• w9100 vs k40 almost 2x 
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Neural Net (NN)  

• Neural Net is represented by a deep learning algorithm that can 
identify pictures of handwritten numbers 0-9 from MNIST inputs 

• CUDA version with CUBLAS support 

• Phi/MIC version with OpenMP/offload support 

• Limited MKL use; rectangular matrices impact threading 

• 784 input neurons, ten output neurons, 
 and one hidden layer with thirty neurons 

• 50,000 training sets 

 

 
[1] M. Nielsen. Neural networks and deep learning. October 2014. https://github.com/mnielsen/neural-networks-and-deep-learning. 

[2] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten digits. 2014. http://yann.lecun.com/exdb/mnist/. 

[3] http://eblearn.sourceforge.net/mnist.html 

Visualization of Testing Set [3] 

http://yann.lecun.com/exdb/mnist/
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Neural Net Results 

• CUBLAS is well tuned for 
rectangular matrices 

• m2090 outperforms all others 

• MKL does not use threads 
for these matrices 

• Custom OpenMP code  

• ... but was not well vectorized 
by the compiler 

• Poor thread scaling on Xeon 
Phi limits its performance 
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Data Analytics  

• Data analytics is represented by relational algebra kernels like 
Select, Project, Join, Union 

• These kernels form the basis of read-only analytics for benchmarks like TPC-
H [1] that have been accelerated with CUDA [2]. 

• SHOC’s OpenCL implementation allows for testing on CPU, GPU, 
and Phi without needing a large database input 

• All tests are standalone with randomly generated tuples 

• More information on the implementation in related work [3] 

 

 

 
[1] T. P. P. Council. TPC Benchmark H (Decision Support) Standard Specification, Revision 2.17.0. 2013. http://www.tpc.org/tpch/ 

[2] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel weaver: Automatically fusing database primitives for  

efficient GPU computation. MICRO 2012 

[3] Ifrah Saeed, Jeffrey Young, Sudhakar Yalamanchili, A portable benchmark suite for highly parallel data  

intensive query processing. PPAA 2015 

http://www.tpc.org/tpch/
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Data Analytics Results 

• Kepler GPU performs best with 7.54 giga-ops/second (GOPS); sensitivity to tuning parameters 
(like workgroup size) makes performance portability difficult for this code 

• Haswell GPU has the best performance when data transfer is included – 1.17 GOPS for 256 MB 
input; Haswell GPU has the best “zero-copy” semantics of integrated GPUs 

Project, no PCIe Transfer Time Project, Transfer Time Included 
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New Programming Models 



15 

Programming Models 

• Originally: CUDA, OpenCL 

• Added: OpenACC, Xeon Phi (OpenMP and LEO) 

• Planned: pure OpenMP  

• When compilers support accelerator features 

• Examples often compare directives to lower-level 

• Directives aren’t expected to outperform, but how much of a loss? 

• What are the other issues (if any)? 



SHOC Example Studies 
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SHOC Example Studies 

• SHOC can be useful for understanding: 

• heterogeneous and many-core system hardware 

• programming heterogeneous systems and accelerators 

• To explore the space of potential studies, we show: 

• Example hardware comparisons 

• Example programming model comparisons 

• These are example analyses to show possibilities 

• Breadth more than depth 

• Others may ask and answer entirely new questions using SHOC 



Hardware Comparisons 
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SHOC Example Hardware Studies 

• Generational improvements for same vendor 

• NVIDIA Fermi m2090 vs Kepler K40 

 

• Large vs small device in same architectural line 

• NVIDIA K40 (15 SMX) vs Jetson TK1 (1 SMX) 

 

• Cross-vendor, i.e., different architectures 

• NVIDIA K40 vs AMD w9100 

• NVIDIA K20 vs Intel Xeon Phi (KNC) 
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Generational Improvement for Same Vendor 

• Host platform differences limited bus speed and impacted PCIe results on newer device 
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Large vs Small Device of Same Architecture 

• 15:1 raw SMX ratio. Accounting for clockspeeds, expect core=14:1, bandwidth=12:1 
• Similar host-device speed limits improvement in “PCIe” benchmarks 
• Unexpected K40 improvements (host/platform, library optimization, or other HW differences) 
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Cross-Vendor Comparisons (AMD v NVIDIA, OpenCL) 

• Raw (level 0) numbers generally better for W9100, translated into several AMD wins 
• Integer performance on W9100 relatively better (MD5Hash) versus floating point 
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Cross-Vendor Comparisons (NVIDIA v Intel) 

• Xeon Phi double precision is relatively better than K20 (i.e. bigger win/smaller loss in DP vs SP) 
• Cache size vs local memory effects have complex tradeoffs 

 



Programming Model 

Comparisons 



25 

SHOC Example Programming Model Comparisons 

• Different explicit models 

• CUDA vs OpenCL was a big interest for SHOC 1.0 

 

• Native versus offload models within a device 

• Xeon Phi with OpenMP 

 

• Generational improvements/regressions in APIs/compilers 

• OpenACC and OpenMP+LEO 

 

• Explicit models vs directive models 

• OpenACC vs CUDA 

• OpenMP vs OpenCL 
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Native vs Offload (Xeon Phi) 

• Benchmarks with PCIe show bigger improvement in Native 
• In particular, see Triad BW 

• However using same directives (offload) for both modes cause some Native slowdowns 
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Compiler Improvement/Regression (Intel 15 vs 13) 

• Improvements were minimal in the newer compiler 

• But several major regressions where older compiler was faster 
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Explicit vs Directive Models (K40 CUDA vs ACC) 

• Some OpenACC results approached CUDA results; some were over 10x slower 

• Generally saw performance regressions, not performance improvements, with newer compiler 
• except one case when older compiler simply generated incorrect binary 



29 

0.1

1

10
FF

T 
(S

P
)

iF
FT

 (
SP

)

FF
T 

(S
P

) 
w

/P
C

Ie

iF
FT

 (
SP

) 
w

/P
C

Ie

FF
T 

(D
P

)

iF
FT

 (
D

P
)

FF
T 

(D
P

) 
w

/P
C

Ie

iF
FT

 (
D

P
) 

w
/P

C
Ie

SG
EM

M

SG
EM

M
 (

tr
an

sp
)

SG
EM

M
 w

/P
C

Ie

SG
EM

M
 (

tr
an

sp
) 

w
/P

C
Ie

D
G

EM
M

D
G

EM
M

 (
tr

an
sp

)

D
G

EM
M

 w
/P

C
Ie

D
G

EM
M

 (
tr

an
sp

) 
w

/P
C

Ie

M
D

 (
SP

 f
lo

p
s)

M
D

 (
SP

 B
W

)

M
D

 (
SP

 f
lo

p
s)

 w
/P

C
Ie

M
D

 (
SP

 B
W

) 
w

/P
C

Ie

R
e

d
u

ct
io

n
 (

SP
)

R
e

d
u

ct
io

n
 (

SP
) 

w
/P

C
Ie

R
e

d
u

ct
io

n
 (

D
P

)

R
e

d
u

ct
io

n
 (

D
P

) 
w

/P
C

Ie

Sc
an

 (
SP

)

Sc
an

 (
SP

) 
w

/ 
P

C
Ie

Sc
an

 (
D

P
)

Sc
an

 (
D

P
) 

w
/P

C
Ie

So
rt

So
rt

 w
/P

C
Ie

St
en

ci
l (

SP
)

St
en

ci
l (

D
P

)

S3
D

 (
SP

)

S3
D

 (
SP

) 
w

/P
C

Ie

S3
D

 (
D

P
)

S3
D

 (
D

P
) 

w
/P

C
Ie

Tr
ia

d
 (

B
W

)

Sp
e

e
d

u
p

 O
p

e
n

M
P

 v
s 

O
p

e
n

C
L

Explicit vs Directive Models (MIC OpenMP vs OpenCL) 

• Level 0 results (not shown) were nearly identical 

• In these Level 1 & 2 kernels, OpenMP was almost always faster than OpenCL 



Conclusion 
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SHOC is useful for benchmarking these systems 

• Wider variety of kernels in SHOC 2.0 

• allows a broader view of device performance 

• Wider variety of programming model support in SHOC 2.0  

• allows a wider array of device support 

• Longitudinal studies 

• across software / hardware generations 

• Cross-sectional studies 

• across APIs, across device vendors 

• Scaling studies  

• device size, device count 
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Lessons learned in the process 

• Compiler directive support not yet mature 

• some bugs, occasional language issues 

• many performance regressions over time 

• minor compilation differences impact performance 

• Lack of hardware support hurts performance 

• e.g. shared memory critical for some kernels, difficult to access with directives 

• potentially work around with API-specific primitives or language features 

• Directives imply portability, but not performance portability 

• difficult to re-imagine key kernels in directive-centric paradigm 

 



ORNL is managed by UT-Battelle  

for the US Department of Energy 

Thanks! 

Questions? 


