Two-level checkpointing and partial verifications for linear task graphs

Anne Benoit, Aurélien Cavelan, Yves Robert and Hongyang Sun

ENS Lyon, France

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit

6th Int. Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS15) @ SC'15

November 15, 2015, Austin, TX

Computing at Exascale

Exascale platform:

- 10^5 or 10^6 nodes, each equipped with 10^2 or 10^3 cores
- ullet Shorter Mean Time Between Failures (MTBF) μ

Theorem:
$$\mu_p = \frac{\mu_{\text{ind}}}{p}$$
 for arbitrary distributions

,	, ,	, ,	120 years
MTBF (platform of 10 ⁶ nodes)	30 sec	5 mn	1 h

Need more reliable components!!
Need more resilient techniques!!!

Computing at Exascale

Exascale platform:

- 10^5 or 10^6 nodes, each equipped with 10^2 or 10^3 cores
- ullet Shorter Mean Time Between Failures (MTBF) μ

Theorem:
$$\mu_p = \frac{\mu_{\text{ind}}}{p}$$
 for arbitrary distributions

MTBF (individual node)	1 year	10 years	120 years
MTBF (platform of 10 ⁶ nodes)	30 sec	5 mn	1 h

Need more reliable components!! Need more resilient techniques!!!

Two main sources of errors

- Fail-stop errors: instantaneous error detection, e.g., resource crash
- Silent errors (aka silent data corruptions),
 e.g., soft faults in L1 cache, ALU, double bit flip
 - Silent error is detected only when corrupted data is activated, which could happen long after its occurrence :
 - Detection latency is problematic
 - Before each checkpoint, run some verification mechanism (checksum, ECC, coherence tests, TMR, etc)
 - Silent error is detected by verification
 ⇒ checkpoint always valid ⊕

Verified checkpoints, rollback and recovery

One step further and partial verifications

- Perform several verifications before each checkpoint:
 - Pro: silent error is detected earlier in the pattern ©
 - Con: additional overhead in error-free executions ©

- Guaranteed/perfect verifications (V*) can be very expensive!
 Partial verifications (V) are available for many HPC applications!
 - ullet Lower accuracy: recall $r=\frac{\# {
 m detected\ errors}}{\# {
 m total\ errors}} < 1$
 - Much lower cost, i.e., $V < V^*$

How many intermediate verifications to use and the positions?

One step further and partial verifications

- Perform several verifications before each checkpoint:
 - Pro: silent error is detected earlier in the pattern \bigcirc
 - Con: additional overhead in error-free executions ©

- Guaranteed/perfect verifications (V*) can be very expensive!
 Partial verifications (V) are available for many HPC applications!
 - Lower accuracy: recall $r = \frac{\# \text{detected errors}}{\# \text{total errors}} < 1$
 - Much lower cost, i.e., $V < V^*$ \odot

How many intermediate verifications to use and the positions?

Two-level checkpointing

- Silent errors: use of a lightweight mechanism of in-memory checkpoints C_M
- Local copies lost in case of fail-stop errors: use (less frequent)
 copies on stable storage (classical disk checkpoints) C_D
- Always C_M before C_D : little overhead, enforced in practice
- Always V^* before C_M : all checkpoints are valid
- Verifications, memory copies and I/O transfers protected from errors

- Problem statement

Application and errors

- Linear chain of tasks T_1, T_2, \ldots, T_n
- Each task T_i has a weight w_i (computational load)
- $W_{i,j} = \sum_{k=i+1}^{j} w_k$: time to execute tasks T_{i+1} to T_j
- Subject to fail-stop and silent errors, independent and following a *Poisson process* with arrival rates λ_f and λ_s
- $p_{i,j}^f = 1 e^{-\lambda_f W_{i,j}}$: probability of having at least a fail-stop error while executing T_{i+1} to T_i
- $p_{i,j}^s = 1 e^{-\lambda_s W_{i,j}}$: idem for silent errors

Resilience parameters and objective

- Cost of disk checkpointing C_D , cost of disk recovery R_D
- Cost of memory checkpointing C_M , cost of memory recovery R_M
- For simplicity, R_M included in R_D
- Cost V* for guaranteed verification
- *V* for partial verification, with recall r, and g = 1 r is the proportion of undetected errosrs
- ⇒ Decide where to place disk checkpoints, memory checkpoints, guaranteed verifications and partial verifications, in order to minimize the expected execution time (or makespan) of the application

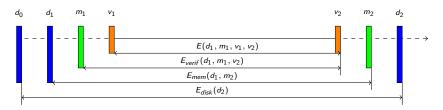
Outline

- 1 Problem statement
- 2 Theoretical analysis
- Performance evaluation
- 4 Conclusion

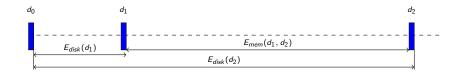
Dynamic programming algorithm

Several dynamic programming levels:

- First decide where to place disk checkpoints
- Then memory checkpoints between any two disk checkpoints
- And finally, guaranteed or partial verifications between any two memory checkpoints
- Compute the expected execution time between any two verifications



Placing disk checkpoints:

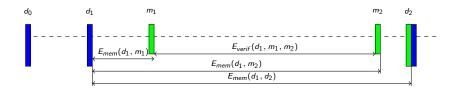


• $E_{disk}(d_2)$: expected time needed to successfully execute tasks T_1 to T_{d_2} , where T_{d_2} is followed by $V^*C_MC_D$:

$$E_{disk}(d_2) = \min_{0 < d_1 < d_2} \{ E_{disk}(d_1) + E_{mem}(d_1, d_2) + C_D \}$$

- Objective: $E_{disk}(n)$
- Initialization: $E_{disk}(0) = 0$

Placing memory checkpoints:

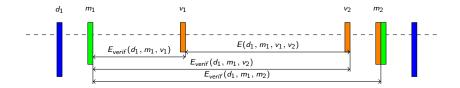


• $E_{mem}(d_1, m_2)$: expected time needed to successfully execute tasks T_{d_1+1} to T_{m_2} , where T_{d_1} is followed by $V^*C_MC_D$ and T_{m_2} is followed by V^*C_M :

$$E_{mem}(d_1, m_2) = \min_{d_1 < m_1 < m_2} \{E_{mem}(d_1, m_1) + E_{verif}(d_1, m_1, m_2) + C_M\}$$

• Initialization: $E_{mem}(d_1, d_1) = 0$

Placing additional guaranteed verifications:



• $E_{verif}(d_1, m_1, v_2)$: expected time needed to successfully execute tasks T_{m_1+1} to T_{v_2} , where T_{d_1} is followed by $V^*C_MC_D$, T_{m_1} is followed by V^*C_M , T_{v_2} is followed by V^* :

$$E_{verif}(d_1, m_1, v_2) = \min_{m_1 < v_1 < v_2} \{E_{verif}(d_1, m_1, v_1) + E(d_1, m_1, v_1, v_2)\}$$

• Initialization: $E_{verif}(d_1, m_1, m_1) = 0$

Expected execution time between two verifications $E(d_1, m_1, v_1, v_2)$, knowing positions of last C_D and last C_M :

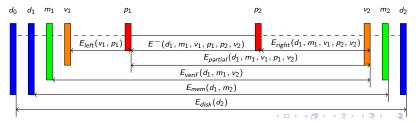
- If p_{V_1,V_2}^f , recover from C_D
- Otherwise, if p_{v_1,v_2}^s , detect error at v_2 and recover from C_M

$$\begin{split} E(d_1, m_1, v_1, v_2) &= \\ p_{v_1, v_2}^f \left(T_{v_1, v_2}^{lost} + R_D + E_{mem}(d_1, m_1) + E_{verif}(d_1, m_1, v_1) + E(d_1, m_1, v_1, v_2) \right) \\ &+ \left(1 - p_{v_1, v_2}^f \right) \left(W_{v_1, v_2} + V^* \right. \\ &+ p_{v_1, v_2}^s \left(R_M + E_{verif}(d_1, m_1, v_1) + E(d_1, m_1, v_1, v_2) \right) \right) \end{split}$$

• Compute $T_{v_1,v_2}^{\text{lost}} = \frac{1}{\lambda_f} - \frac{W_{v_1,v_2}}{e^{\lambda_f W_{v_1},v_2}-1}$ and simplify

And with partial verifications?

- Probability g that error remains undetected after partial verification
- Need to account fo time lost executing following tasks until error is detected: compute first values at the right of the current interval
- $E_{partial}(d_1, m_1, v_1, p_1, v_2)$: expected time needed to execute all tasks T_{p_1+1} to T_{v_2} , tries all positions p_2 for next partial verification
- $E_{partial}(d_1, m_1, v_1, p_1, v_2)$ calls recursively $E_{partial}(d_1, m_1, v_1, p_2, v_2)$
- To compute $E^-(d_1, m_1, v_1, p_1, p_2, v_2)$, need to know $E_{left}(v_1, p_1)$ and $E_{right}(d_1, m_1, v_1, p_2, v_2)$; E_{right} can be computed, and E_{left} accounted for separately (independent on nb of partial verifs)



Outline

- Problem statement
- 2 Theoretical analysis
- Performance evaluation
- 4 Conclusion

Simulation settings

- Identical recovery and checkpoint costs: $R_D = C_D$ and $R_M = C_M$
- $V^* = C_M$ (check all data in memory), $V = \frac{V^*}{100}$ and r = 0.8
- Work W = 25000 seconds, distributed between up to n = 50 tasks:
 - *Uniform*: all tasks share the same cost $\frac{W}{n}$ (matrix multiplication, iterative stencil kernels)
 - Decrease: task T_i has cost $\alpha(n+1-i)^2$, where $\alpha \approx \frac{3W}{n^3}$ (dense matrix solvers)
 - HighLow: set of identical tasks with large costs followed by tasks with small costs
- Platforms used to evaluate Scalable Checkpoint/Restart (SCR) library (Moody et al.):

platform	#nodes	λ_f	λ_s	C_D	C_M
Hera	256	9.46e-7	3.38e-6	300 <i>s</i>	15.4 <i>s</i>
Atlas	512	5.19e-7	7.78e-6	439 <i>s</i>	9.1 <i>s</i>
Coastal	1024	4.02e-7	2.01e-6	1051 <i>s</i>	4.5 <i>s</i>
Coastal SSD	1024	4.02e-7	2.01e-6	2500 <i>s</i>	180.0 <i>s</i>

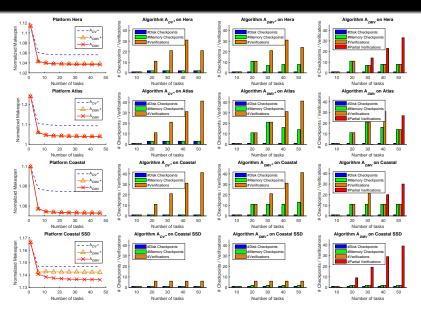


Figure: Performance of the three algorithms with *uniform* distribution

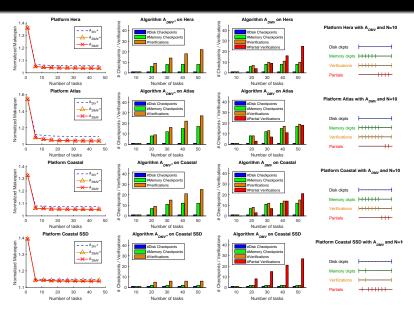


Figure: Performance of the three algorithms with decrease distribution

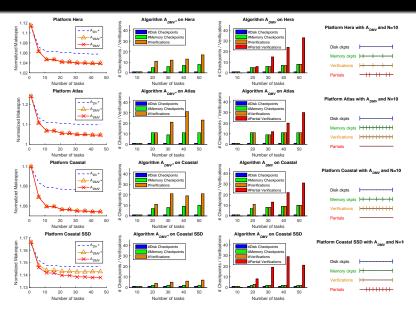


Figure: Performance of the three algorithms with *highlow* distribution

Summary of simulations

- ullet More tasks o better performance
- Single-level algorithm: Guaranteed verifications everywhere, except with too many tasks (n=50 on Hera) or cost of verification too high (Coastal SSD)
- Two-level algorithms: Use of memory checkpoints drastically reduces makespan
- With partial verifications: Need to use a lot of them (smaller recall): useful only when enough tasks; limited impact, except for Coastal SSD with higher checkpointing and verification costs

Outline

- 1 Problem statement
- 2 Theoretical analysis
- Performance evaluation
- 4 Conclusion

22/23

Conclusion

Conclusion

- Two-level checkpointing scheme to cope with fail-stop and silent errors
- Combines disk/memory checkpoints with guaranteed/partial verifications
- Theoretically: multi-level polynomial-time dynamic programming algorithm for linear chains $(O(n^6))$
- Practically: benefit of combined approach with realistic parameters, fast in practice

Future directions

- Usefulness of the approach on general application workflows
- Need of efficient polynomial-time heuristics

Research report RR-8794 available at graal.ens-lyon.fr/~abenoit

