
Portable Power/Performance Benchmarking and Analysis
with WattProf

Amir Farzad
University of Oregon

farzad@cs.uoregon.edu

Boyana Norris
University of Oregon

norris@cs.uoregon.edu

Mohammad Rashti
RNET Technologies, Inc.

mrashti@rnet-tech.com

ABSTRACT
Energy efficiency is becoming increasingly important in high-
performance computing. Hardware and software tools that
enable fine-grained measurement of power for real applica-
tions can help understand the power attributes of applica-
tion components. This paper introduces new software in-
frastructure based on the WattProf measurement hardware
that enables high-resolution, per-component power measure-
ments. We demonstrate this new infrastructure by analyzing
the power, and energy efficiency of the the MiniFE proxy ap-
plication built with different optimization levels. We create
models that can be used to guide power-aware optimizations.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Tools, Performance, Power

Keywords
power measurement, analysis, performance

1. INTRODUCTION
Energy efficiency is becoming increasingly important in

high performance computing. In order to optimize the be-
havior of computations with respect to power and energy, we
must be able to perform fine-grained measurements of real
applications, which would enable accurate analysis and mod-
eling of their power and energy requirements. The majority
of power measurement tools are platform-specific and sup-
port varying types and granularities of measurement, which
can make analysis difficult. Compared to performance mea-
surement and analysis, power monitoring and subsequent
analysis is still a relatively new and rapidly changing area.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

We are developing a general-purpose fine-grained power
measurement system and associated software infrastructure
for the analysis and modeling of power and energy of real
HPC applications. The ultimate goal is to provide a com-
plete system that can be used to generate scalable power
or energy models based on small-scale accurate power mea-
surements and other more easily measured parameters (e.g.,
hardware performance counters). Instead of instrumenting
the hardware of very large-scale parallel systems, our ap-
proach relies on adding sensors to just a few representative
nodes and then creating empirical models of per-component
(e.g., CPU, memory, network interface) power or energy
based on smaller-scale runs on the instrumented nodes, us-
ing performance counters or problem parameters as the in-
dependent variables. Models can be generated for the entire
application or for individual functions. The models can be
used for selecting algorithms, for source code optimization
(e.g., through manual or automated tuning), or for runtime
parameter tuning.

The specific contributions described in this paper include
the following.

• Use of the new WattProf board [9] to collect fine-
grained power and energy measurements.

• Automated source code instrumentation of C and For-
tran codes for collecting function-level power and en-
ergy measurements;

• Power and energy analysis and modeling use cases based
on this infrastructure.

2. RELATED WORK
We briefly overview some existing hardware and software

tools that can be used to measure, analyze and model power
and energy.

Power measurement hardware. The WattProf card used
in our system is described in more detail in [9], where it is
also compared with other power measurement devices, such
as PowerMon2 [1] and PowerInsight [7].

Measurement software. Many vendors provide utilities for
measuring power and power-related system characteristics.
These are typically specific to each platform and do not share
a common interface. The Performance API (PAPI) analysis
library supports measurement of power and energy values
through the PAPI-C interface [12], e.g., through integration
with Intel’s RAPL. The Energy Measurement Library [3] is a

recent effort aimed at providing a portable, uniform interface
to a diverse and comprehensive power and energy measure-
ment tools. Integrating WattProf measurement with PAPI
and/or EML is a future goal for our work.

Analysis and Modeling. Several research efforts have tar-
geted estimating power or energy based on direct measure-
ment of performance counters. Lim et al. [8] use a small set
of counters to correlate well, and independently, with fine-
grain measurements that distinguish among power consump-
tion by system components such as CPU, memory, disk, and
I/O devices. Their goal is system power estimation, while
we are targeting more fine-grain (per function) models that
would be useful for tuning applications. In previous work,
we [5] and others [2] have also used counter-based power es-
timation – at that time, the inability to measure power at a
fine enough granularity presented obstacles to both building
and validating models. Tiwari et. al [10] use a neural net-
work approach to model power and energy of HPC kernels
such as matrix multiplication and LU factorization.

3. POWER MEASUREMENT
In this section we briefly overview the hardware used for

measurement and our instrumentation-based approach.

3.1 WattProf Board
The WattProf system consists of a programmable moni-

toring board (a PCIe expansion card), voltage/current sen-
sor boards for individual system components, host driver,
and user-level API [9]. The monitoring board collects power
and energy samples from system components (e.g., CPU,
memory, compute accelerators, network interface cards, disks,
and fans) by using measurement sensors attached to power
lines (rails). The board can collect data from up to 128 sen-
sors at up to 12KHz. Raw or processed power and energy
data and statistics can be collected using multiple mecha-
nisms, including transfer to the host (via PCIe), transfer to
a remote agent via on-board Ethernet, or buffered on the
board’s local storage for future retrieval.

3.2 Source Code Instrumentation Toolkit
The WattProf software API enables us to measure the

power and energy consumption of a piece of code through
starting and stopping a measurement window by calling the
corresponding API functions. Considering the accuracy and
the sampling frequency of this card, we are able to measure
power and energy of individual function calls of HPC kernels.
The granularity of the information that WattProf can gather
is similar to performance tools such as PAPI, TAU, and
HPCToolkit. Because the WattProf API consists of basic
functions that just start or stop the measurement window,
we also developed a tool that instruments the source code
for power and energy measurement.

This power instrumentation is applied to source code dur-
ing compilation by using the -finstrument-functions flag
provided by GNU and Intel compilers, which works with C,
C++ and Fortran. This option automatically calls the spec-
ified routines at the beginning and end of each function in
the source code. Note that this option does not require any
manual changes in the target source code. We exploited this
functionality for WattProf power monitoring API. It starts
a measurement window at the beginning of each function
and closes the window at the end of the function.

Our power instrumentation software includes a function
responsible for initializing the WattProf card and measure-
ment data structures, and another function responsible for
gathering the measurements and generating the correspond-
ing log files at the end of the program. The power instru-
mentation also keeps track of the measurement window in
the context of call stack. Hence, the output log files also
report the call path information along the power and energy
information.

One of the important issues in instrumentation and profil-
ing source codes is the overhead of this extra measurement.
In particular in our power and energy measurement, the in-
strumentation is not aware of context switching and there
are no registers to switch on/off the measurement. Hence we
were careful to minimize this overhead. Almost all the extra
operations are done either before starting a measurement
window or after closing the window.

We used this power instrumentation toolkit to measure,
analyze and model the power/energy of HPC benchmarks
and proxy applications. Generally this toolkit can be used
in automated power and energy analysis and modeling. The
data collected with WattProf can be used to help identify
power-inefficient code regions and guide power and energy
optimization.

4. ANALYSIS
Using the WattProf platform we have the option to mea-

sure the power and energy of different hardware components
within a fine-grained window. This level of measurement
accuracy helps us gather data about power and energy con-
sumption of entire long-running HPC applications or for
short-running fragments, e.g., individual functions. More-
over, we can acquire valuable information which might not
be revealed by coarser-grained power and energy measure-
ment. For example we found evidence that reductions on
execution time through different optimizations are not lin-
early related to power or energy for individual functions.
This result challenges the commonly accepted result of “the
instruction count was directly proportional to energy con-
sumption” which is commonly used in prior work (for exam-
ple [11]).

In this paper we evaluate our analysis and modeling ap-
proach on the miniFE proxy application from the Mantevo
benchmark suite [4]. We used the WattProf card on a ma-
chine with two Intel Xeon CPUs E5620 with 24GB memory
and running Ubuntu 14.04.2 with Linux kernel 3.13. We con-
sidered problem sizes ranging from 30x30x30 to 150x150x150
and different numbers of MPI processes ranging from 1 to
8. We compiled the MPI-based miniFE with GCC 4.8.2
with optimization levels -O0, -O1, -O2 and -O3 in order to
study the effects of optimization on power and energy con-
sumption. For each experiment we ran the corresponding
instrumented binary file three times and computed the av-
erage value. We collected per-function measurement profiles
for the CPU, motherboard, memory and hard disk. While
WattProf also supports GPU and network card measure-
ment, because miniFE does not use the GPU and we ran
on a single node only, we omitted the graphics and network
card measures.

4.1 Power
The power efficiency of the CPU and the maximum power

usage are two important measures that are used on profiling

and optimization of an HPC application. In some previous
studies it is mentioned that the more aggressive optimization
levels (-O3) may increase the power dissipation while they
decrease the energy consumption due to shorter runtimes [6].
Our experiments show that this conclusion for power might
not be valid for computations similar to miniFE. The power
level depends on many factors including the size of the prob-
lem relative to cache size and also on number of MPI pro-
cesses. Moreover, the Intel turbo boost technology introduces
complex dynamic behavior that depends on the type of the
workload, number of active cores, processor temperature and
estimated power and energy consumption. For brevity we
show the results for one experiment on miniFE, which are
representative of the results we obtained for most problem
sizes that do not fit in cache. Figure 1 compares the power
consumption for miniFE with size 150x150x150 and different
compiler optimizations.

of MPI Processes
1 2 3 4 5 6 7 8

Po
w

er
 (W

at
t)

0

20

40

60

80

100

120
miniFE nx=150

CPU O0
MB O0
Memory O0
HDD O0
CPU O1
MB O1
Memory O1
HDD O1
CPU O2
MB O2
Memory O2
HDD O2
CPU O3
MB O3
Memory O3
HDD O3

Figure 1: Power consumption of miniFE bechmmark
(problem size 150x150x150) with varying numbers
of MPI processes and different levels of compiler op-
timization.

These results show that the power does not necessarily
increase with more aggressive optimization levels nor with
number of processes. For example, CPU power for -O1 ex-
hibits some unexpected peaks at 5 and 7 processes, which
warrants more detailed investigation into the effects of cer-
tain optimizations on power consumption.

4.2 Energy Measurement
We measured the energy consumption in our experiments

for different hardware components. Figure 2 depicts the to-

tal energy consumption of miniFE (problem size 150x150x150)
and MPI processes p = 2, 4, 6, 8. Experiments for other
problem sizes showed similar trends.

In Figure 2 we can see that the -O0 version consumes sig-
nificantly more energy than other optimization levels. Un-
surprisingly, the majority of the energy for miniFE is con-
sumed by the CPU for miniFE. Also for each MPI task
count, we can see that -O3 consistently consumes less en-
ergy than the -O2 optimization level, but -O1 is sometimes
better and sometimes worse than either of the other two
optimized versions.

of MPI Processes
o0o1o2o3 o0o1o2o3 o0o1o2o3 o0o1o2o3

E
n

er
g

y
(J

o
u

le
)

104

0

0.5

1

1.5

2

2.5

3

P2 P4 P6 P8

Energy Ratio for different
Components, miniFE nx=150

CPU
MB
Memory
HDD

Figure 2: Energy consumption of different hardware
components for miniFE problem size 150x150x150
and MPI processes p=2,4,6,8.

4.3 CPU Efficiency
CPU efficiency is typically defined as amount of useful

work per Watt. For HPC applications, a common efficiency
metric is floating-point operations per Watt. Generally it is
desirable to maximize the CPU efficiency.

We computed the MFLOPs/Watt measure for miniFE
experiments with different optimization levels and varying
numbers of MPI processes. We obtained the FLOPS val-
ues by using TAU and PAPI to collect performance hard-
ware counter measurements. Figure 3 depicts two problem
sizes; 40x40x40 and 100x100x100. The interesting result
is that the CPU efficiency has a complex relationship to
the optimization level and number of processes. In gen-
eral, there does not seem to be an easily predictable trend.
Although more aggressive optimization levels may produce
more FLOP/s they also reduce the total number of opera-
tions to solve the same problem size. On the other hand,
the power level of the CPU depends on some other factors
including the number of active cores and the CPU load and
varies dynamically. We suspect more independent variables
and parameters should be considered to effectively analyze
and model CPU efficiency.

While here we focus on the CPU energy efficiency, we
can apply a similar approach to other system components.
In particular beyond a single node, models for the network
interface power and energy use can help analyze and poten-
tially optimize communications. Moreover, our infrastruc-

of MPI Processes
1 2 3 4 5 6 7 8

M
eg

aF
lo

p
s/

W
at

t

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13
CPU efficiency. miniFE nx=40

O0 Efficiency
O1 Efficiency
O2 Efficiency
O3 Efficiency

(a) CPU efficiency for problem size 40x40x40.
of MPI Processes

1 2 3 4 5 6 7 8

M
eg

aF
lo

p
s/

W
at

t

140

150

160

170

180

190

200

210

220

230

240

CPU efficiency. miniFE nx=100

O0 Efficiency
O1 Efficiency
O2 Efficiency
O3 Efficiency

(b) CPU efficiency for problem size 100x100x100.

Figure 3: CPU efficiency (MFLOPs/Watt) of different optimization levels for two problem sizes.

ture enables easy definitions of other metrics of efficiency.

4.4 Profiling and Optimization
Next we demonstrate the ability of WattProf to profile

the power of individual functions. The resolution of this
data is comparable to performance metrics. For example the
information that we can collect with hardware performance
counters for the same functions can be analyzed along with
the power and energy measurements. These results can be
used to help identify power-inefficient code regions and guide
power and energy optimizations.

Figure 4 shows the CPU power usage for top three time-
consuming functions in miniFE for different optimization
levels ranging from O1 to O3. An interesting observation
in this experiment is that for the miniFE::mytimer() power
decreases with increasing the optimization level (O1 > O2 >
O3), while for the miniFE::driver(), power increases with
the optimization level (O1 < O2 < O3). Note that this
reflects inclusive measurements (i.e., the mytimer function
is somewhat anomalous in that it wraps other functions for
profiling purposes). In future work we will enable exclusive
measurement, which would accurately reflect the power and
energy of just the instructions local to each function (and
not including the code in other functions called from the
current function).

This example shows the potential benefit of fine-grained
power and energy measurement with WattProf, which can
be used to guide more localized optimizations of HPC ap-
plications with respect to performance, power and energy.

5. MODELING CPU ENERGY
A mathematical model for energy/power consumption is

of interest to build predictive models. The fine-grain results
that we gathered from WattProf can be used for building
accurate models. For example, Figure 5 depicts the en-
ergy consumption for miniFE compiled with -O3 flag. It
shows the energy along the number of MPI processes (p =
1, 2, ..., 8) and the problem size nx = 30, 40, ..., 150. The
mesh surface in Figure 5 shows the fitted model and the

Time (second)
0 1 2 3 4 5

En
er

gy
 (J

ou
le

)

92

94

96

98

100

102

104

O1

O2

O3O3
O2

O1

O1

O2

O3

miniFE nx=60

miniFE::driver()
miniFE::mytimer()
miniFE::initialize_mpi()

Figure 4: Energy consumption of the top three
miniFE functions vs. execution time.

points show actual measurements.
We fitted a bivariate cubic polynomial model. Equation 1

shows the fitted cubic polynomial for estimating CPU energy
for varying numbers of processes and problem dimensions.
For this level of optimization, energy is highly correlated
with time (r = 97.41%); the model for time is similar and
hence not shown here.

f(x, y) = −141.2 + 68.68x + 6.387y + 31.31x2

− 5.443xy + 0.07479y2 − 5.877x3

+ 0.9003x2y − 0.03153xy2 + 0.001114y3, (1)

where x is the the number of processes and y is the prob-
lem size. The goodness-of-fit statistics for this fitting model
shows this bivariate cubic polynomial is acceptable: the R2

value is 97.85% and the MSE is 105.1477 (80% training, 20%
testing data split from a total of 104 data points). Figure 6

876

of MPI Processes

54321
40

60
Problem size (nx)

80
100

120
140

2000

3000

4000

5000

0

1000

E
n

er
g

y
(J

o
u

le
s)

Figure 5: Bivariate cubic polynomial model on CPU
energy consumption for miniFE compiled with O3.

depicts the absolute error between the experimental energy
data and the model.

8
6

of MPI Processes

4
2

0
40

60
Problem size (nx)

80
100

120
140

0

2000

1000

3000

4000

5000

E
n

er
g

y
(J

o
u

le
s)

Figure 6: Absolute error value between the model
and experimental energy data (R2 = 97.85%).

6. CONCLUSION AND FUTURE WORK
We showed that a fine-grained portable performance mea-

surement infrastructure based on the new WattProf card can
be used successfully for accurate measurement and analysis
of realistic applications. We also constructed a model for
the energy consumption of individual system components.
This new infrastructure aims to automate the data gather-
ing, analysis and model-generation process for power and
energy. We are also working on integrating power measure-
ment and modeling in the Orio autotuning framework.

Acknowledgments
This work was supported in part by DOE Grant DE-SC0004510.

7. REFERENCES
[1] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield.

Powermon: Fine-grained and integrated power
monitoring for commodity computer systems. In IEEE
SoutheastCon 2010 (SoutheastCon), Proceedings of
the, pages 479–484, March 2010.

[2] W. L. Bircher and L. K. John. Complete system power
estimation using processor performance events. IEEE
Trans. Comput., 61(4):563–577, Apr. 2012.

[3] A. Cabrera, F. Almeida, J. Arteaga, and V. Blanco.
Measuring energy consumption using EML (Energy
Measurement Library). Computer Science - Research
and Development, 30(2):135–143, 2015.

[4] M. A. Heroux, D. W. Doerer, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving performance via mini-applications.
Technical Report SAND2009-5574, Sandia National
Laboratories, Sept. 2009.

[5] K. A. Huck, O. Hernandez, V. Bui,
S. Chandrasekaran, B. Chapman, A. D. Malony, L. C.
McInnes, and B. Norris. Capturing performance
knowledge for automated analysis. In Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC’08), 2008.

[6] M. E. Ibrahim, M. Rupp, and S.-D. Habib.
Compiler-based optimizations impact on embedded
software power consumption. In Circuits and Systems
and TAISA Conference, 2009. NEWCAS-TAISA’09.
Joint IEEE North-East Workshop on, pages 1–4.
IEEE, 2009.

[7] J. H. Laros, P. Pokorny, and D. DeBonis.
PowerInsight–a commodity power measurement
capability. In Green Computing Conference (IGCC),
2013 International, pages 1–6, 2013.

[8] M. Y. Lim, A. Porterfield, and R. Fowler. Softpower:
Fine-grain power estimations using performance
counters. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 308–311.
ACM, 2010.

[9] M. Rashti, G. Sabin, and B. Norris. Power and energy
analysis and modeling of high performance computing
systems using WattProf. In Proceedings of the 2015
IEEE National Aerospace and Electronics Conference
(NAECON), July 2015.

[10] A. Tiwari, M. Laurenzano, L. Carrington, and
A. Snavely. Modeling power and energy usage of hpc
kernels. 2012.

[11] M. Valluri and L. K. John. Is compiling for
performance compiling for power? In Interaction
between Compilers and Computer Architectures, pages
101–115. Springer, 2001.

[12] V. M. Weaver, M. Johnson, K. Kasichayanula,
J. Ralph, P. Luszczek, D. Terpstra, and S. Moore.
Measuring energy and power with PAPI. In
Proceedings of the 2012 41st International Conference
on Parallel Processing Workshops, ICPPW ’12, pages
262–268. IEEE Computer Society, 2012.

	Introduction
	Related Work
	Power Measurement
	WattProf Board
	Source Code Instrumentation Toolkit

	Analysis
	Power
	Energy Measurement
	CPU Efficiency
	Profiling and Optimization

	Modeling CPU Energy
	Conclusion and Future Work
	References

