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ABSTRACT
Scalable systems employing a mix of GPUs with CPUs are
becoming increasingly prevalent in high-performance com-
puting (HPC). The presence of such accelerators introduces
significant challenges and complexities to both language de-
velopers and end users. This paper provides a close study
of e�cient coordination mechanisms to handle parallel re-
quests from multiple hosts of control to a GPU under hy-
brid programming. Using a set of microbenchmarks and
applications on a GPU cluster, we show that thread- and
process-based context hosting have di↵erent tradeo↵s. Ex-
perimental results on application benchmarks suggest that
both thread-based context funneling and process-based con-
text switching natively perform similarly on the latest Fermi
GPU, while manually guided context funneling is currently
the best way to achieve optimal performance.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: [Perfor-
mance attributes]; D.1.3 [PROGRAMMING TECH-
NIQUES]: Concurrent Programming—Parallel program-

ming

General Terms
Languages, Performance, Measurement

Keywords
GPU, Multicore, UPC, Hybrid Parallel Programming

1. INTRODUCTION
The HPC field is currently undergoing a major trans-

formation. As multi/manycore processors gain prevalence,
Chip-Multiprocessing has become the primary means for
achieving performance gains. It is also the case that ac-
celerators such as GPU are becoming increasingly popular.
New GPU-based parallel systems exhibit heterogeneous exe-
cution patterns and exhibit deeper memory and communica-
tion hierarchies. Limited by I/O, power and other mechani-
cal constrains, contemporary heterogeneous systems usually
have a configuration ratio of one GPU per CPU socket. In
order to achieve higher application performance and scala-
bility on large scale systems, it is therefore essential to pro-
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vide an e�cient sharing mechanism of a GPU device among
multicore CPUs.

When the CUDA runtime API (prior to v4.0) is used, re-
gardless of either threads or processes, each host instance
accessing a particular device would get its own context to
that device, and requests to the GPU are serialized by the
driver. We refer to this mode as context switching, as in
Figure 1(a). As synchronization can be handled at di↵erent
software levels, the context funneling [3] technique can be
used as a workaround to traditional context switching. In
context funneling execution, only the master thread creates
a GPU context and subsequently interacts with the GPU on
behalf of other peer threads/processes. Since the serializa-
tion of requests to a shared GPU is promoted to the applica-
tion level and handled by users explicitly, we term this mode
manual context funneling as depicted in Figure 1(b). Under
CUDA v4.0, the CUDA runtime library automatically binds
a GPU context to each host process at initialization time;
all threads running in this process are implicitly bound to
that context. This last mode is called automatic context

funneling as in Figure 1(c).

2. EXPERIMENTAL RESULTS
In [3] we proposed the UPC/CUDA hybrid programming

model to provide a powerful and productive mechanism for
application developers for creating scalable applications on
GPU clusters. The same model is used in this research.
Compared with other popular programming models that are
either purely thread based (such as OpenMP) or process
based (MPI), the current UPC implementations have the
advantage of providing both mechanisms built into the in-
frastructure, where UPC-level tasks can be mapped to a mix
of processes and pthreads. This is especially convenient for
hybrid programming with CUDA or OpenCL, as users can
selectively choose the ratio of processes/threads to run per
node and such a configuration will later a↵ect the a�nity of
GPU contexts to CPU tasks at runtime.

Our experiments were conducted on a GPU cluster with
16 nodes. Each compute node has two quad-core Intel Xeon
E5520 processors along with an NVIDIA GPU (Tesla C1060
or C2070) and a Mellanox ConnectX QDR InfiniBand adapter.
In this work, we use the Berkeley UPC compiler 2.12.1 with
the backend GCC 4.4.3.

We begin the comparison of context switching and fun-
neling with a set of microbenchmarks. These benchmarks
seek to measure the communication throughput and latency
between heterogeneous subsystems on the GPU cluster. We
vary the number of active CPU cores (i.e., the number of
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(b) Manual context funneling.
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(c) Automatic context funneling.

Figure 1: Comparison of various shared accesses to a GPU.
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(a) FT.
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(b) MG.

Figure 2: NAS performance on Tesla C2070.

processes or the number of pthreads per process) per node
to gradually increase the connections between the two nodes.
We vary the size of messages over powers of two and the re-
sults reported for each message size is the average of 1024
iterations of the basic test. We have several observations:
(1) The C1060 GPU exhibits higher latency than the C2070
with one CPU host; (2) The C2070 outperforms the C1060
on context switching configurations thanks to its signifi-
cantly lower context switching overhead; (3) The benefit of
GPU sharing can be observed on both context switching and
funneling settings, where communication performance keeps
increasing until it approaches the 3GB/s ceiling set by the
InfiniBand network.

We next move to the NAS Parallel Benchmarks (UPC
NPB) [1,2], including FT and MG, to continue the compar-
ison. For NPB tests, we are interested in strong scaling per-
formance and intranode scalability of di↵erent GPU sharing
mechanisms. We fix the problem size to be NAS FT/MG
Class C (512⇥512⇥512 double complex numbers). We also
fix the number of cluster nodes to 16 and vary the number
of active CPU cores used per node from 1 to 8 (maximum 8
CPU cores share a GPU).

For the FT benchmark, the default context switching and
funneling show weaker performance than manual funneling.
This is due to the lack of control over execution overlap
on the GPU. As a result, CUDA streams arrive at host
threads at irregular and close time intervals, rendering inef-
fective CPU/GPU overlap. Manual context funneling gives
the best possible concurrent execution on the GPU by aug-
menting the baseline code with locking mechanisms to en-
sure UPC threads take turns in o✏oading operations. The
performance gain can be as much as 20% and is more signifi-
cant on the C2070 due to e↵ectively exploiting the advantage
of concurrent bi-directional memory copies.

The performance results of MG on the Tesla C2070 is il-
lustrated in Figure 2(b). Comparing the three GPU sharing
modes, the advantage of context funneling execution is more

apparent here, thanks to the capability of in-memory surface
update. Moreover, concurrent kernel execution also plays a
role here, as MG uses a V-cycle solver and computation in-
tensity drops along with the refinement steps. However, in
order to make the best use of concurrent kernel execution
on the C2070 GPU, kernels have to be o✏oaded to the GPU
in back-to-back streams, which partially explains the higher
performance of manual context funneling thanks to guided
operation o✏oading.

3. CONCLUSIONS
This paper examines the tradeo↵s between di↵erent GPU

sharing modes that have not been previously studied. Cur-
rently, the CUDA v4.0 runtime provides two built-in GPU
sharing modes: automatic context funneling by sharing a
same context with multiple host threads, or context switch-
ing under multiple processes. Under shared execution, the
CUDA infrastructure can automatically serialize concurrent
requests to a shared GPU. Our performance evaluation indi-
cates that application-level synchronized command o✏oad-
ing is essential to achieve optimal performance. Context
funneling in general has the advantages of concurrent kernel
execution and more e�cient sharing. The manual context
funneling mechanism provides an explicit execution model,
therefore it gives more control to the programmer to avoid
the ine�ciencies caused by transparent but expensive com-
mand serialization. We believe our study is an important
step towards operating GPUs with better overall utilization
on modern hybrid multicore/GPU systems. The full paper
can be found in [4].
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