
Benchmarking Disk-based Archival Storage Tiers using
Appropriate Archival Workloads

DongJin Lee Michael O’Sullivan Cameron Walker

Department of Engineering Science
The University of Auckland

Auckland, New Zealand
{dongjin.lee, michael.osullivan, cameron.walker}@auckland.ac.nz

ABSTRACT

This paper presents benchmark experiments for designing
an optimal archival storage system. The benchmark utilizes
archival workloads developed from an analysis of historical
file size distributions. The workloads provide more appro-
priate measurements of system performance as an archive
than traditional approaches. We use these benchmarks to
measure disk-based archival systems.

We then consider designing an archival system based on
our benchmark measurements and produce a low cost design
for a commodity disk-based archival storage system. Com-
bining results of predictions along with our optimization-
driven design, we discover an ideal building block for an
archival storage system.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems—Design studies, Measurement techniques

General Terms

Design, Measurement, Performance

Keywords

Archival, Benchmark, Disk, File Size, Storage, Workload

1. INTRODUCTION
Information is becoming more valuable and access to that

data is critical in many organizations. Modern hierarchical
storage management (HSM) maintains high capacity by us-
ing different tiers of storage to provide fast access to impor-
tant, frequently accessed data at high cost and slower access
to less important, infrequently accessed data at low cost.
A widely used archive storage system is made up of tape-
based disks and provides high capacity, but it lacks arbitrary
retrieval performance. Disk-based storage systems have re-
cently received increasing interest due to their decreasing
cost and high performance, but benchmarking with an ap-
propriate archival workload and building optimal systems
(e.g., number of disks, nodes, etc.) has not been studied.

In this paper, we generate file workloads for an archival
storage tier which is determined by the size of files in the
archive. We use empirically measured file size distributions

Copyright is held by the author/owner(s).
PMBS’11, November 13, 2011, Seattle, Washington, USA.
ACM 978-1-4503-1102-1/11/11.

from large HPC archival sites [1] with which we develop a
model for the typical distribution of archival file size. Our
generated workload is compared with different kinds of dis-
tributions to confirm the robustness of our model, and is
then benchmarked against two different sets of servers run-
ning on a distributed object-based file system (Ceph [5]).
We measured the performance of these servers in several
different configurations, e.g., single server with many disks,
multiple servers with a few disks each.

2. ARCHIVAL STORAGEWORKLOAD
For online (e.g., scratch volume, non-archival) tiers, the re-

quirements prioritize heavy I/O performance, so stress test-
ing by generating a large number of low-level I/O blocks may
be appropriate via an I/O work generator tool, e.g., IOzone.
However, for archival storage, stress test benchmarking is
not appropriate. The results from the block-based bench-
marks are unrealistic as they do not generate files or file
sizes that correspond to a typical archival workload.

The archival process periodically selects a list of files (us-
ing selection policies such as by last-accessed time) and ag-
gregates them into an ordered batch. These batches are then
written sequentially to the archive volume (data migration),
we call this operation sequential-write. The process also
spends a significant amount of time reading files from the
volume (data retrieval). Usually this operation reads files or
fragments of files from multiple locations within the archive
in an arbitrary pattern, we call this operation random-read.
The I/O performance varies with different OS, file systems
and disks themselves, but the critical factors affecting the
time required for the access-patterns (sequential-write or
random-read) are the number of files and the size of each
file. Hence, in order to ensure that our storage design and its
performance metrics are based on the typical archival work-
load, we obtained archival datasets and statistically modeled
their file size distributions.

Figure 1 shows the fit using Gamma and Generalized
Gamma distribution functions which also account for possi-
ble variations by incorporating confidence interval envelopes,
so as add robustness of each fits with a possible lower-bound
(more large files) and an upper-bound (more small files);
see [3] which details our methodologies with performance
comparisons amongst the models. We then generate work-
load from the fitted models (fileset distributions with vary-
ing capacity utilization) and benchmark a disk-based stor-
age system configured with high- and low- performance ma-
chines. Here we show results using an Intel Atom D525;
other setups are discussed in the full paper [2].

File size

C
D

F

2K 8K 32K 256K 1M 4M 16M 64M 512M 2G 8G 32G

0.0

0.2

0.4

0.6

0.8

1.0

Archive

arsc−nanu1, E[X]=14.8MB

arsc−seau2, E[X]=30.2MB

arsc−seau1, E[X]=43.8MB

pnnl−nwfs, E[X]=27.9MB

Non−Archive

lanl−scratch1, E[X]=8.9MB

pnnl−home, E[X]=0.7MB

pdl1, E[X]=0.6MB

pdl2, E[X]=0.3MB

File size

C
D

F

2K 8K 32K 256K 1M 4M 16M 64M 512M 2G 8G 32G

0.0

0.2

0.4

0.6

0.8

1.0

Distribution Fitting

X~ Gamma

X~ Gen. Gamma

Confidence Intervals

X~ Gamma CI 95%

X~ Gamma CI 99%

X~ Gen. Gamma CI 95%

X~ Gen. Gamma CI 99%

Figure 1: File size distributions with CI envelopes

3. DESIGNEXPERIMENTSANDRESULTS
Single node: We performed the experiments on a single

machine with the following setups.
Changing the number of disks on the node – The sequential-

write performance decreases with increasing capacity utiliza-
tion. This is due to a larger proportion of the disk platter
being used and the decrease is more pronounced with more
disks. The decrease is also exacerbated for multiple disks
from the disk management overhead.

Changing the RAM on the node – We experimented with
different levels of RAM and found that more RAM helps for
random-reads (there was no noticeable effect for sequential-
write), but only when the capacity utilization is small. Some
of the node’s RAM is used as cache for the OS and some for
the Object Storage Disk, i.e., disk, so this assists perfor-
mance when the volume of reads is low. However, once the
total volume of reads is at any reasonable level the cache has
little effect. Additionally, in a real-world storage archive, we
would not expect files to be re-read soon after they are writ-
ten or read, so caching would not help.

Changing the controller – We experimented with the con-
troller by connecting the disks via a RAID controller instead
of the built-in motherboard SATA controller and SATA ex-
tenders. The effect of the RAID controller was similar to
the effect of extra RAM, i.e., it improved performance for
low I/O volumes. This was due to the cache on the RAID
controller acting in a similar manner to the RAM cache for
the OSD. However, when used in write-through mode (i.e.,
bypassing the controller’s cache) we observed an overall im-
provement in sequential-write performance. We expect this
is because the RAID controller’s hardware deals with writing
the data instead of the node’s CPU, hence the improvement.

Multiple nodes: We performed the experiments on dif-
ferent configurations by changing both the number of nodes
and the number of disks per node. We had 6 nodes and 12
disks, so we tested (number of nodes, disks per node) con-
figurations, e.g., (2, 1), (2, 2), . . . , (6, 1), (6, 2). Figure 2
shows the sequential-write performance of per node and mul-
tiple disks for these configurations.

We observe the performance per disk drops (when the
number of nodes is kept constant) due to the overhead of
managing more disks. This is also shown by the form of
the total sequential-write performance, i.e., tailing off to a
constant value. Furthermore, the performance drops as the
number of disks per node is kept constant and the number
of nodes increases. This is expected as the total number of
disks is increasing, thus increasing management overhead.
Note that both plots illustrate different increase functions
at different capacity utilizations; less capacity utilization
clearly has higher per-disk increase values. We expect in-
creasing the number of disks much above 6 nodes would
lead to a performance decrease as the overhead of disk man-
agement on the node outweighs the benefit of more disks.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

se
q

u
e

n
tia

l−
w

ri
te

 (
M

B
/s

)

number of disks per node

LP node per−disk performance function (20% cap. util.) [4GB, SATA]

x1 node
x2 nodes
x4 nodes
x6 nodes

(2x6)=12 disks

(3x4)=12 disks

(6x2)=12 disks

(6x1)=6 disks

1 2 4 6 8 10 12
0

50

100

150

200

250

300

se
q

u
e

n
tia

l−
w

ri
te

 (
M

B
/s

)

total number of disks

LP node total performance function (5% cap. util.) [4GB, SATA]

1 node total
2 nodes total
4 nodes total
6 nodes total

linear rate
x19.8MB/s

max. supported disks

min. performance
min. cost/power

max. performance
max. cost/power

Figure 2: Performance function of multiple nodes

Summarizing our observations, we find the following be-
havior. First, the highest total performance is obtained with
multiple nodes (6 nodes, 2 disks each), but this configuration
also incurs the highest cost and power consumption. This
configuration has the lowest per-disk performance. Second,
by contrast, the highest per-disk performance is obtained
with the least nodes (2 nodes, 6 disks each), but the to-
tal performance is low due to the limited number of nodes.
However, the smaller number of nodes leads to low cost and
less power consumption. Lastly, there are configurations
that balance performance and cost/power consumption. For
example, nodes with (4 nodes, 3 disks each) configuration
get reasonable performance, cost and power consumption.

The measurements were then integrated with vendor spec-
ifications and combined into an optimization-based auto-
matic design tool that produced the best archival storage tier
design. We have discovered an ideal building block for an
archival storage system, suggesting a combination of the var-
ious high- and low-performance servers, and median-range
servers. Nevertheless, the best configuration to use depends
on the priorities of the storage architect; see [4] for details
of the optimization-based automatic design tool.

4. CONCLUSION
In this paper, we have developed a file size distribution

workload benchmark that models the typical workload ex-
perienced by an archival storage tier. This benchmark is
then thoroughly tested on multiple nodes of different config-
urations. Lastly, our measurements are then utilized for an
optimization-driven design so as to discover an ideal build-
ing block for an archival storage system; the resultant design
suggested a combination of the measured servers might be
appropriate. Combining both our measurements and resul-
tant predictions enables us to determine properties of a com-
ponent that is beneficial for the archival storage tier design,
even if such a component does not currently exist (see [4]).

5. REFERENCES
[1] S. Dayal. Characterizing hec storage systems at rest. In

Technical Report, CMU-PDL-08-109. Carnegie Mellon
University Parallel Data Lab, July 2008.

[2] D. Lee, M. O’Sullivan, and C. Walker. Benchmarking
disk-based archival storage tiers using appropriate archival
workloads. SIGMETRICS Performance Evaluation Review,
40(2), 2012.

[3] D. Lee, M. O’Sullivan, C. Walker, and M. Mackenzie. Robust
benchmarking for archival storage tiers. In PDSW, 2011.

[4] M. O’Sullivan, C. Walker, and D. Lee. Designing data
storage tier using integer programing. In SAC, 2012.

[5] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In OSDI, pages 307–320, 2006.

	Introduction
	Archival Storage Workload
	Design Experiments and Results
	Conclusion
	References

