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ABSTRACT
Multicore multiprocessors use Non Uniform Memory Ar-
chitecture (NUMA) to improve their scalability. However,
NUMA introduces performance penalties due to remote mem-
ory accesses. Without e�ciently managing data layout and
thread mapping to cores, scientific applications, even if they
are optimized for NUMA, may su↵er performance loss. In
this paper, we present an algorithm that optimizes the place-
ment of OpenMP threads on NUMA processors. By collect-
ing information from hardware counters and defining new
metrics to capture the e↵ects of thread placement, the al-
gorithm reduces NUMA performance penalty by minimizing
the critical path of OpenMP parallel regions and by avoiding
local memory resource contention. We evaluate our algo-
rithm with NPB benchmarks and achieve performance im-
provement of between 8.13% and 25.68%, compared to the
OS default scheduling.
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1. INTRODUCTION
Non Uniform Memory Architecture (NUMA) has been

widely adopted in current systems. Many recent shared-
memory multicore multiprocessors, such as the IBM Power
7 and the Intel Single-chip Cloud Computer (SCC), use
NUMA to dedicate di↵erent memory lanes to di↵erent pro-
cessor cores and to distribute system DRAM between pro-
cessors. Compute nodes of many high-end systems such as
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the Cray XMT, also use NUMA to provide more memory
bandwidth per socket. As the number of cores per node in-
creases, NUMA becomes the memory organization of choice
for sustaining scalability in the memory system.

Although NUMA is becoming prominent, it has been the
source of performance problems for multi-threaded appli-
cations. First, optimizing data locality on NUMA is chal-
lenging. Performance optimization for NUMA systems typ-
ically relies on optimizing data locality. Such locality op-
timization may be achieved either with NUMA-aware data
placement or with NUMA-aware thread placement to max-
imize the local data access. However, doing this can poten-
tially create contention on the cache hierarchy and mem-
ory controllers, which in turn limits application’s scalabil-
ity [2]. Hence, balancing the local and remote data ac-
cesses on NUMA systems is challenging. Second, NUMA
may break performance and power optimizations, such as
Dynamic Concurrency Throttling (DCT) [1]. DCT dynami-
cally adjusts the number of threads between parallel regions,
based on a performance model that predicts the best concur-
rency configuration for each parallel region. Appropriately
selecting the thread number and thread placement for each
parallel region can lead to both performance and power im-
provement for multi-threaded applications. However, when
adjusting the concurrency configuration across parallel re-
gions on NUMA systems, the optimized data localization
can be easily broken. Third, the conventional OS schedulers
do not provide adequate support to solve NUMA issues. OS
schedulers emphasize fairness, system throughput and re-
sponsiveness, thus ignoring the implication of data locality
when scheduling threads.

In this paper, we propose three algorithms to optimize
thread placement on NUMA systems. Using hardware event
counters that collect data on local and remote memory ac-
cesses for each thread during sampled iterations of appli-
cation code, the three algorithms attempt to map threads
close to their associated data. The first algorithm enumer-
ates all possible thread mappings and chooses the one that
maximizes local memory accesses. This algorithm, however,
does not scale due to its time complexity, which increases
with the number of feasible thread to core mappings. Also
it does not consider local memory contention. The second
algorithm solves these problems. It uses parallel radix sort-
ing to order thread-to-core mappings. Radix sort reduces
the time complexity of the algorithm. To avoid local mem-
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Algorithm 3,  MG. B  (4 threads) 
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Algorithm 3, MG. B (8 threads) 
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Algorithm 3, MG.B  (16 threads) 
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Algorithm 3,  SP.C  (4 threads) 
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Algorithm 3,  FT.B (8 threads) 
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Figure 1: Performance comparison between Algorithm 3 and the system default. X-Axis: Execution time

under Algorithm 3 divided by the execution time under the system default mapping

ory contention, the second algorithm sacrifices data locality
for selected threads by moving those threads away from the
data that they access more frequently, if doing so has a per-
formance benefit based on the algorithm’s performance pre-
diction. The second algorithm, however, does not consider
performance variation between threads. Due to load imbal-
ance between threads and a varying level of resource con-
tention between memory nodes, a thread may have longer
execution time than the others (i.e., the thread may lie on
the critical path). We derive a third algorithm that chooses
thread mappings that lead to the minimal critical path. This
third algorithm defines a new metric, the Impact Factor
(IF), which captures the e↵ects of thread placement on both
local and remote memory nodes. By selecting a thread map-
ping with the lowest IF, the third algorithm minimizes the
critical path.

2. RESULTS
We implement the three algorithms and apply them to the

NAS Parallel Benchmarks Suite (OpenMP version 3.1) on a
system with four quad-core AMD Opteron 8350 HE proces-
sors (16 cores in total) with Linux (version 2.6.32). Figure 1
displays the results for the third algorithm, compared to the
OS default scheduling. We find that this algorithm performs
well, no matter how many OpenMP threads are used to exe-
cute parallel regions. For the tests with 4, 8 and 12 threads,
the third algorithm performs better than the system default
scheduling on average by 8.13% and up to 25.68%, because
the OS algorithm ignores the critical path, although the OS
evenly distributes threads between cores. The third algo-
rithm considers both potential local memory contention and
the critical path. Thus, it chooses better thread mappings

and improves performance.

3. CONCLUSIONS
NUMA architectures raise significant performance prob-

lems due to mismatch between data and thread placement.
We propose NUMA-aware, thread placement algorithms that
are guided by the hardware counter events. The best of
these algorithms avoids local memory contention and takes
into consideration the critical path to improve the perfor-
mance of parallel applications on NUMA systems. The full
paper can be found in [3].

4. REFERENCES
[1] Curtis-Maury, M., Shah, A., Blagojevic, F.,

Nikolopoulos, D. S., de Supinski, B. R., and
Schulz, M. Prediction Models for Multi-dimensional
Power-Performance Optimization on Many Cores. In
Proceedings of the 17th International Conference on

Parallel Architectures and Compilation Techniques

(New York, NY, USA, 2008), PACT ’08, ACM,
pp. 250–259.

[2] Terboven, C., an Mey, D., Schmidl, D., Jin, H.,
and Reichstein, T. Data and Thread A�nity in
OpenMP Programs. In Proceedings of the 2008

Workshop on Memory Access on Future Processors: A

Solved Problem? (New York, NY, USA, 2008), MAW
’08, ACM, pp. 377–384.

[3] Su, C.Y., Grove, M., Li, D., Cameron, K.,
Nikolopoulos, D., and de Supinski, B.R. Critical
Path-Based Thread Placement for NUMA Systems.
SIGMETRICS Performance Evaluation Review 40(2)

(2012)


