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ABSTRACT
Interconnects in emerging high performance computing sys-
tems feature hardware support for one-sided, asynchronous
communication and global address space programming mod-
els in order to improve parallel e�ciency and productivity by
allowing communication and computation overlap and out-
of-order delivery. In practice though, complex interactions
between the software stack and the communication hard-
ware make it challenging to obtain optimum performance
for a full application expressed with a one-sided program-
ming paradigm. Here, we present a proof-of-concept study
for an autotuning framework that instantiates hybrid ker-
nels based on refactored codes using available communica-
tion libraries or languages on a Cray XE6 and a SGI Altix
UV 1000. We validate our approach by improving perfor-
mance for bandwidth- and latency-bound kernels of interest
in quantum physics and astrophysics by up to 35% and 80%
respectively.

Categories and Subject Descriptors
C.4 [Performance of systems]: [Modeling techniques, Per-
formance attributes]

General Terms
Performance

1. INTRODUCTION
A major challenge for scalable scientific applications is

the widening gap in performance between processor and
memory, a phenomena aggravated in the context of large
distributed memory machines. With multi-chip multi-core
(MCMC) nodes or accelerated nodes with GPU devices in-
creasing the FLOP capacity per node, the interconnection
problem is only bound to become ever more demanding.
Memory locality is key, as the rate of access to data is de-
termined by its distance to the processor, ranging from local
memory, to a nearby socket or a distant network node.

Massively Parallel Processing (MPP) systems consisting
of thousands of processors o↵er integrated solutions of hard-
ware and software to meet the requirements of demand-
ing scientific applications. Traditionally, the interconnection
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network in MPP systems has been optimized for distributed-
memory, message-passing communication paradigms. How-
ever, the message-passing model may impose unnecessary
communication overheads, so native remote memory access
support is becoming increasingly attractive for highly scal-
able platforms. Such support is present for the Gemini inter-
connect in the Cray XE6 and the NUMAlink5 architecture
in the SGI Altix UV 1000.

A variety of communication solutions for parallel pro-
gramming are o↵ered on these high-end MPP systems, in-
cluding the message-passing MPI library as well as models
that explicitly rely on one-sided and asynchronous commu-
nication primitives such as put or get. In these systems,
the interaction between the compiler and runtime with the
hardware layer becomes a complex one, especially if we con-
sider multiple communication methods. The maturity of
the software layer and its tuning with the networking ar-
chitecture are key factors. In our experience, choosing the
optimal communication solution for a scientific kernel on
MCMC MPPs is highly challenging.

Although there is relevant work aimed to improve com-
munication e�ciency, by using non-blocking collectives [3],
compiler-generated non-blocking communication [2], or joint
compiler/runtime support [1], the combined use of available
communication paradigms is largely unexplored.

We contribute to these e↵orts by combining, even within a
single kernel instantiation, several communication methods
available on the system, into hybrid solutions. We organize
this process within an autotuning framework, which is able
to generate optimum communication-intensive kernels for
several target platforms, and could serve as the basis for
the development of autotuning tools by system vendors. We
validate our approach with two scientific kernels that belong
to the areas of quantum physics [4] and astrophysics [5],
which represent bandwidth- and latency-bound workloads
respectively, achieving a relative improvement over a base
version of up to 35% and 80%.

2. AUTOTUNING FRAMEWORK
Our autotuning framework is composed of three basic

stages as shown in Fig. 1. First is code refactoring, which ex-
poses the communication pattern so that it can be expressed
with one-sided communication primitives. When possible,
out-of-order message delivery is tolerated too. This trans-
formation allows for maximum flexibility for the hardware
and runtime to schedule the communication in the most ef-
ficient manner. Second, a thorough platform profiling phase



I. Code refactoring!

Local work  
Loop 
    MPI_Isend/Irecv 
    MPI_Wait 
    Work on remote data (in order) 

1 private comm. buffer per pe 
… 

k shared comm. buffers per pe  
(limited by data availability and on-node memory) 

Loop 
    One-sided non-blocking put (round of k msgs) 
    Work on local data (if available) 
    Sync (fence, flags, barrier, …) 
    Work on remote data (out of order) 

(Domain knowledge) 
 

II. Platform profile!

Refactored kernel clearly exposes and  
generalizes the communication pattern.  
This transformation is platform-independent. 

Microbenchmark 
for one-sided  

communication 
operations and 

collectives 

•  Msg size 
•  Synchronization construct 
•  Issue rate 
•  Msgs per pe 
•  Work per msg 
•  Rounds of msgs 
•  … 

Different communication methods are tested: UPC, MPI and DMAPP (only Cray). 

 SGI Altix UV 1000 

CRAY XE6 

Platform specific knowledge base 
for basic communication operations. 

III. Code generation!

Loop 
    MPI_Isend/MPI_Irecv (k msgs) 
    Work on local data (if available) 
    MPI_Test on ring of handlers 
    Work on remote data (out of order) 

… 

Loop 
    upc_memput (k msgs) 
    Work on local data (if available) 
    upc_fence; put notification flag; Test on ring of flags 
    Work on remote data (out of order) 

Kernel i! Kernel i+1!

… … 

… 

Figure 1: Autotuning framework, organized in 3 stages for (I) code refactoring, (II) platform profiling, and

(III) code generation.

is performed to steer the code generation process. Vendors
or users can create a knowledge database for the di↵erent
communication methods available in the system, for a broad
number of processors, messages sizes, etc. Third is code gen-

eration. By using the refactored algorithm template with
flexible communication and the pruning provided by the
platform profiling, di↵erent kernels can be generated, com-
bining communication methods appropriately. The result-
ing implementations can then be explored by executing and
evaluating them to locate the most e�cient version for each
combination of running conditions, such as problem size or
number of processors.

3. CONCLUSIONS
We present a proof-of-concept for an autotuning frame-

work targeting di↵erent communication methods on two dif-
ferent HPC architectures with specific support for remote
memory access, a Cray XE6 and a SGI Altix UV 1000.
While several communication strategies can be deployed in
such systems, it is very challenging to find the optimal im-
plementation for a specific kernel in all running conditions
of interest. Our framework defines the strategy to perform

the automatic selection of such optimal kernel version. The
full paper can be found in [6].
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