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ABSTRACT
Benchmarks are essential for evaluating HPC hardware and
software for petascale machines and beyond. But benchmark
creation is a tedious manual process. As a result, bench-
marks tend to lag behind the development of complex scien-
tific codes. Our work automates the creation of communica-
tion benchmarks. Given an MPI application, we utilize Sca-
laTrace, a lossless and scalable framework to trace communi-
cation operations and execution time while abstracting away
the computations. A single trace file that reflects the behav-
ior of all nodes is subsequently expanded to C source code
by a novel code generator. This resulting benchmark code is
compact, portable, human-readable, and accurately reflects
the original application’s communication characteristics and
performance. Experimental results demonstrate that gener-
ated source code of benchmarks preserves both the commu-
nication patterns and the run-time behavior of the original
application. Such automatically generated benchmarks not
only shorten the transition from application development to
benchmark extraction but also facilitate code obfuscation,
which is essential for benchmark extraction from commer-
cial and restricted applications.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques;
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming

General Terms
Measurement, Performance

Keywords
Benchmark Generation, ScalaTrace, Performance

1. INTRODUCTION
Benchmarks are widely used for evaluating and analyzing

system performance and assessing migration costs of HPC
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applications to platforms with different architectures. They
are easy to port, modify and run, and they closely resemble
the characteristics of HPC applications. But most bench-
marks do not capture the complexity and scale of realistic
HPC applications as they do not feature the intricate inter-
play of computation, communication and I/O operations.

We generate communication benchmarks automatically.
These benchmarks are human readable, compact, easy to
generate and port. They closely resemble the execution time
and communication volume of the original application.

As an input, we take an HPC application with message
passing communication using MPI (Message Passing Inter-
face). The application’s communication patterns are cap-
tured in traces. The obtained trace is given as an input
to the benchmark generator, which is the central focus of
this work. It outputs the communication benchmark in C
code (including MPI calls for communication) that can be
executed on target machine, as illustrated in Figure 1.
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Figure 1: Benchmark Generation System - Block Diagram

The contributions of this work are (1) a demonstration
and evaluation of the feasibility of automatically converting
parallel applications into human-readable benchmark codes
and (2) an approach for resembling the original performance
by generating benchmarks from communication traces.

Our work benefits application developers, communication
researchers, and HPC system designers. Application devel-
opers can benefit in multiple ways. First, they can quickly
gauge the application performance of a target machine be-
fore investing in the effort to port their applications to that
machine. Second, they can use the generated benchmarks
for performance debugging as the benchmarks can separate
communication from computation to help isolate observed
performance anomalies. Third, application developers can
examine the impact of alternative application implementa-
tions such as different data decompositions (causing different
communication patterns) or the use of computational accel-
erators (reducing computation time without directly affect-
ing communication time). Communication researchers can
benefit by being able to study the impact of novel messaging
techniques without the need to build complex applications
and without access to source code that is not freely dis-
tributed or even classified. Finally, procurement of HPC sys-
tems can benefit by contracting vendors to deliver a specified
performance on a given auto-generated benchmark without
having to provide those vendors with the actual application.



2. BENCHMARK GENERATOR DESIGN
The process of automatic benchmark source code genera-

tion from communication traces is accomplished by travers-
ing through the trace of a parallel application obtained from
ScalaTrace. We utilize ScalaTrace [2] for communication
trace collection. ScalaTrace captures the communication in
lossless and near constant size with respect to the number
of nodes and timesteps. It uses extended regular section
descriptors (RSD) to record the participating nodes and pa-
rameter values of multiple calls to a single MPI routine in
the source code across loop iterations and nodes in a com-
pressed manner. Power-RSDs (PRSD) recursively specify
RSDs nested in a loop. It also employs pattern based intra-
node and inter-node compression techniques to extract the
application’s communication structure.

During Traversal, PRSDs representing loops are converted
to C-style for loops. Behavioral constraints captured by
traces are imposed in the generated code using condition-
als on loop index variables and on ranks of the processes
participating in a particular event. The RSDs that rep-
resent point-to-point communication are converted to re-
spective point-to-point MPI calls in C code. For example,
blocking sends and receives are transformed to MPI Send
and MPI Recv.Collective calls are generated using MPI col-
lective routines in C such as MPI Barrier, MPI Reduce,
MPI Alltoall and so on. The communicator-based MPI
events are converted to the respective routines such as
MPI Comm split and MPI Comm dup.

We generate delta times for the computational regions. In
a compressed trace, delta times before the leading event of
nested loops are represented by a list of histograms to distin-
guish between different execution paths. During code gener-
ation, conditionals on loop iterator variables are generated
so that different execution paths will lead to different sleep
times. Histograms contain the statistical information, e.g,
min, max, and mean of the recorded delta times. Currently,
we use the mean to generate sleep statements. For appli-
cations exhibiting heavy load imbalance, more fine-grained
approaches can be used to generate sleeps.

3. EXPERIMENTAL RESULTS
To evaluate our benchmark generation tool, we generated

C code with MPI calls for the NAS Parallel Benchmarks
(NPB) suite (version 3.3 for MPI) using class C and D input
sizes [1] and for the Sweep3D neutron-transport kernel [3].

Our first set of experiments verifies the correctness of the
generated benchmarks, i.e., the benchmark generator’s abil-
ity to retain the original applications’ communication pat-
tern. These experiments were done on ARC, a cluster with
1728 cores on 108 compute nodes, 32 GB memory per node
and an Infiniband Interconnect. For these experiments, we
acquired traces of our test suite, generated communication
benchmarks, and executed these benchmarks also on the
same machine. We linked both the generated codes and the
original applications with mpiP. Experimental results (not
presented here) showed that, for each type of MPI event,
the event count and the message volume measured for each
generated benchmark matched perfectly with those mea-
sured for the original application. We then instrumented
each generated benchmark with ScalaTrace and compared
its communication trace with that of its respective original
application. The results (again, not presented here) show
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Figure 2: Timing Accuracy of NPB LU and Sweep3D Codes

that the original applications and the generated benchmarks
have equivalent traces.

In the second experiment, we assessed the ability of the
generated benchmark to retain the performance in terms
of wall-clock time relative the original application. We exe-
cuted both the original application and the generated bench-
mark on ARC, measured and compared the elapsed times.
The results obtained are shown in the Figure 2. Quantita-
tively, the mean percentage error (|Tgen−Tapp|/Tapp∗100%)
across all the graphs is only 6.7%.

4. CONCLUSION
We have designed and implemented a novel communica-

tion benchmark code generator that generates benchmark
code in C with MPI calls from communication traces. These
traces are generated by ScalaTrace, a lossless and scalable
framework to extract communication, I/O operations and
execution time while abstracting away the computations.
These benchmarks are human readable, compact, easy to
generate and port. They also preserve the behavior of the
original application in terms of execution time, communi-
cation volume and ordering of events. Furthermore, ap-
plication code is obfuscated by our benchmark generation
process, which allows auto-generated benchmarks of other-
wise restricted / distribution-controlled applications to be
released to the public. Experiments were done with NPB
and Sweep3D. The results show that the benchmarks ac-
curately preserve not only application semantics but also
overall execution time. Our benchmark generator can ben-
efit application developers, communication researchers and
HPC system designers. It may assist in performance anal-
ysis of software, hardware and can also ease migration of
applications across different platforms. The full paper can
be found at [4].
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