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ABSTRACT
DARPA’s AACE project aimed to develop Architecture Aware Com-
piler Environments that automatically characterize the hardware
and optimize the application codes accordingly. We present the
BlackjackBench suite, a collection of portable micro-benchmarks
that automate system characterization, plus statistical analysis tech-
niques for interpreting the results. BlackjackBench discovers the
effective sizes and speeds of the hardware environment rather than
the often unattainable peak values. We aim at hardware features
that can be observed by running executables generated by exist-
ing compilers from standard C codes. We characterize the memory
hierarchy, including cache sharing and NUMA characteristics of
the system, properties of the processing cores affecting execution
speed, and the length of the OS scheduler time slot. We show how
these features of modern multicores can be discovered program-
matically. We also show how the features could interfere with each
other resulting in incorrect interpretation of the results, and how
established classification and statistical analysis techniques reduce
experimental noise and aid automatic interpretation of results.

Categories and Subject Descriptors
B.8.2 [Performance Analysis and Design Aids]

General Terms
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1. INTRODUCTION
Compilers, autotuners, numerical libraries, and other performance

sensitive software need information about the underlying hardware.
If portable performance is a goal, automatic detection of hardware
characteristics is necessary given the dramatic changes undergone
by computer hardware. Several system benchmarks exist in the lit-
erature [1, 2, 4, 5, 6, 7, 8, 9]. However, as hardware becomes more
complex, new features need to be characterized and assumptions
about hardware behavior revised, or completely redesigned.
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In this paper, we present BlackjackBench, a system characteriza-
tion benchmark suite. The contribution of this work is twofold:
1. Portable micro-benchmarks that can probe the hardware and
record its behavior while control variables are varied.
2. A statistical analysis methodology, implemented as a collection
of scripts for result parsing, that examines the output of the micro-
benchmarks and produces the desired system characterization in-
formation, e.g. effective speeds and sizes.

Often, important performance related decisions take into account
effective values of hardware features, rather than their peak values.
In this context, we consider an effective value to be the value of
a hardware feature that would be experienced by a user level ap-
plication written in C (or any other portable, high level, standards-
compliant language) running on that hardware. This is in contrast
with values that can be found in vendor documents, or through as-
sembler benchmarks, or specialized instructions and system-calls.

BlackjackBench goes beyond the state of the art in system bench-
marking by characterizing features of modern multicore systems,
taking into account contemporary – complex – hardware character-
istics such as modern sophisticated cache prefetchers, and the inter-
action between the cache and TLB hierarchies, etc. Furthermore,
BlackjackBench combines established classification and statistical
analysis techniques with heuristics tailored to specific benchmarks,
to reduce experimental noise and aid automatic interpretation of
the results. As a consequence, BlackjackBench does not merely
output large sets of data that require human intervention and com-
prehension; it shows information about the hardware characteris-
tics of the tested platform. Moreover, BlackjackBench does not
rely on assembler code, specialized kernel modules and libraries,
nor non-portable system calls. Therefore, it is a portable system
characterization tool.

2. STATISTICAL ANALYSIS
The output of the micro-benchmarks is typically a curve consist-

ing of a large number of points representing the performance of
the code for different values of the control variable.We have de-
veloped analyses that can process this data and output values that
correspond to actual hardware characteristics.

2.1 Monotonicity enforcement
Except for the micro-benchmark that detects asymmetries in the

memory hierarchy, the output curve is expected to be monotoni-
cally increasing. If any data points violate this expectation, it is
due to noise, or esoteric hardware details that are beyond the scope
of our benchmarks. Therefore, as a first post-processing step we
enforce monotonic increase using the formula: ∀i : Xi = min j≥i X j.



2.2 Gradient Analysis
Most of our benchmarks result in data that resemble step func-

tions and we aim to detect the location of these steps.
First Step. To extract the number of Execution Contexts from

the data, we are interested in that first jump from the straight line.
Due to noise, there can be small jumps in the part of the data that is
expected to be flat. The challenge is to systematically define what
constitutes a small jump versus a large jump. We first calculate
the relative value increase in every step dY r

n = Yn+1−Yn
Yn

and then
compute the average relative increase 〈dY r〉. We argue that the data
point that corresponds to the jump we want (and thus the number of
execution contexts) is the first data point i for which dY r

i > 〈dY r〉.
The rationale is that the average of a large number of very small
values (noise) and a few much larger values (actual steps) will be a
value higher than the noise, but smaller than the steps. Thus 〈dY r〉
gives us a good threshold between small and large values.

Biggest Step. The Live Ranges benchmark produces curves that
start flat (when all variables fit in registers) then potentially grow
slightly (if some registers are unfavorable), then exhibit a large step
when the first spill to memory occurs, and then continue growing
iregularly. Due to the increase in latency before the first spill, the
previous approach for detecting the first step is not appropriate for
this type of data. However, the steps caused by the additional spills
will be no larger than the step caused by the first spill. Furthermore,
since the additional steps have higher starting values than the first
step, the relative increase Yn+1−Yn

Yn
for every n higher than the first

spill will be lower than the relative increase of the first spill.
The biggest relative step technique can also be used for process-

ing the results of the cache line size benchmark and the cache as-
sociativity benchmark. For the TLB page size, where the desired
information is in the last large step, the analysis seeks the biggest
scaled step dY s = dY ×Y (instead of the biggest relative step).

Quality Threshold Clustering Unlike the previous cases, where
the analysis aimed to extract a single value from each data set, the
benchmark for detecting the cache size, count, and latency has mul-
tiple steps that carry useful information. Due to the regular nature
of the steps this benchmark generates, we can group the data points
into clusters based on their Y value (access latency) with one clus-
ter for one cache level. We use a modified version of the quality
threshold clustering algorithm [3]. The modification pertains to the
cluster diameter threshold. Unlike regular QT-Clustering with the
diameter being a predetermined constant, our version uses 25% of
the average value of each cluster as the diameter.

Using QT-Clustering, we can obtain the points that correspond
to each cache level. We can extract for each cache level the size
information from the maximum X value of each cluster, the latency
information from the minimum Y value and the number of cache
levels from the number of clusters. An example use of this analysis
for a Power7 processor can be seen in Figure 1. QT-Clustering is
also used for the levels of TLB.

3. CONCLUSION
We have presented the BlackjackBench system characterization

suite, that goes beyond the state of the art in benchmarking by:
1. Offering micro-benchmarks that can exercise a wider set of hard-
ware features than most existing benchmark suites do.
2. Emphasizing portability by avoiding low level primitives, spe-
cialized software tools and libraries, or non-portable OS calls.
3. Providing statistical analyses for inferring useful values that de-
scribe the hardware from the raw results of the micro-benchmarks.
4. Emphasizing the detection of hardware features through varia-
tions in performance. BlackjackBench detects the effective values
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Figure 1: QT-Clustering applied to Power7 Cache Data

of hardware characteristics, which is what a user level application
experiences when running on the hardware.

We described how the micro-benchmarks operate, and their fun-
damental assumptions. We explained the analysis techniques and
demonstrated that our assumptions are valid and portable on a va-
riety of hardware platforms and operating systems. The full paper
can be found in [10].
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