
Optimizing Matrix Transposes Using a POWER7 Cache
Model and Explicit Prefetching

Gabriel Mateescu
Ecole Polytechnique Fédérale de Lausanne

Blue Brain Project, 1015 Lausanne, Switzerland

Gregory H. Bauer and Rober A. Fiedler
National Center for Supercomputing Applications

1205 W. Clark St., Urbana, IL 61801, USA

ABSTRACT
We develop a matrix transpose approach on the POWER7
architecture based on modeling the memory access latency
and cache, and then designing the cache blocking, data align-
ment, and prefetching techniques that enhance performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance model, Memory Bandwidth, Concurrency

Keywords
Matrix Transpose, Cache, Prefetching, POWER7

1. INTRODUCTION
We consider the problem of transposing a matrix out-

of-place, and design a tiling and software prefetching ap-
proach that matches the POWER7 processor microarchitec-
ture. We model the concurrent processes of transposing and
prefetching and derive a model of the transpose time.

2. PROBLEM FORMULATION
Let A be a matrix of order n, where A = {a

i,j

| 1  i, j 
n, a

i,j

2 R}. We consider the out-of-place matrix transpose
problem: construct the matrix AT = {aT

j,i

| 1  i, j  n} at
memory locations disjoint from A such that aT

j,i

= a
i,j

for
1  i, j  n. The machine’s RAM is assumed to be large
enough for both A and AT to fit in memory. We employ
blocked (tiled) transpose, whereby A and AT are divided
into square blocks of order B. Assume that B divides n; the
number of blocks in A or AT is (n

B

)2 = (n/B)2.

3. APPROACH AND MODEL
We model and implement three widely used techniques

for improving the performance of the transpose operation:
(1) cache prefetching: to avoid compulsory cache misses;
(2) model-based blocking: to improve the cache hit rate by
improving the temporal locality; and (3) data alignment to
avoid cache conflict misses. We model the time to perform

Copyright is held by the author/owner(s).

PMBS’11, November 13th, 2011, Seattle, Washington, USA.

ACM 978-1-4503-1102-1/11/11.

the transpose in terms of algorithmic and processor microar-
chitecture parameters.

Prefetching can hide the latency associated with loading
(or storing) data from (or to) memory. Prefetching works
by launching the loading of the data from memory into the
level-one (or L1) cache at a point in the program execution
that is ahead of the point where the data is used, so that,
by the time the program execution reaches point where it
needs the data, the data has been loaded into the L1 cache.

Algorithm 1 implements cache-blocking and prefetching
to perform the transpose operation; it traverses the B ⇥ B
blocks of A and AT , in row-major and column-major order,
respectively. The prefetch stride is the distance between the
matrix element being copied from the current block and the
matrix element being prefetched from the next block. The
prefetch strides for traversing the blocks in row-major and
column-major order are S

r

and S
c

, respectively.

Algorithm 1 Tiled Matrix Transpose with Prefetch

1. for (i
b

= 0; i
b

< n; i
b

= i
b

+B) do

2. for (j
b

= 0; j
b

< n; j
b

= j
b

+B) do

3. for (i = i
b

; i < i
b

+B; i = i+ 1) do

4. j
r

= j
b

+ S
r

;
5. j

c

= j
b

+ S
c

+ i;
6. Prefetch(a[i][j

r

: j
r

+B])
7. Prefetch(aT [j

c

][i : i+B])
8. for (j = j

b

; j < j
b

+B; j = j + 1) do

9. aT [j][i] = a[i][j]
10. end for

11. end for

12. end for

13. end for

The unit for prefetching is a cache line of length L, mea-
sured in bytes. The block size B must be a multiple of L.
In order to avoid capacity misses in the L1 cache, which
must simultaneously hold four blocks (the source and target
blocks being transposed and the source and target blocks be-
ing prefetched), we find that the block size is B 2 {16, 32}.
For reference, the POWER7 processor [4] has L = 128 bytes
and a L1 cache of 32 KB [4, 1].

The data alignment and the prefetch strides are related by
R, the storage reserved for a row of A, which includes the n
elements and additional padding elements to avoid conflict
cache misses: R = L/8 ⇥ (n

S

⇥ d(8n)/(L⇥ n
s

)e+ 1). The
stride S

r

is: (1) B, if j
b

< J
b

, where J
b

= max{j
b

}; (2)
B ⇥ R � j

b

, otherwise, where j
b

is the column index of the
first column in block b of A. The stride S

c

is (1) B ⇥ R,



if j
b

< J
b

where J
b

= max{j
b

}; (2) B � j
b

⇥ R, otherwise,
where j

b

is the row index of the first row in block b of AT .
The L1 cache in POWER7 is an eight-way set associative

memory [1, 3]. We can think of the L1 cache as an array
with n

S

= 32 rows and n
A

= 8 columns, where n
A

is the
number of cache lines in a set, and n

S

is the number of sets.
Since the L1 cache is not fully associative, alignment of

the rows of A and AT with respect to the sets of the L1
cache is needed to avoid conflict misses. During the trans-
pose operations four blocks are in cache: two blocks that
are tansposed and two that are prefetched. Data alignment
ensures that these blocks fit in cache without a conflict miss.
If consecutive block-rows of a block of A and AT are located
in consecutive sets of the L1 cache, then there is room in
cache for the four blocks; by reserving 8⇥ R bytes for each
row of A and AT , we ensure this.

To get the transpose time we compute the time taken by
one iteration of the loop at lines 3-10 in Algorithm 1, hence-
forth called the i loop, when there are no memory stalls.
The time is T

work

= 2B T
L1 + (8B/L)T

PF

, where: T
L1 is

the number of clock cycles needed to load (store) a floating
point register from (to) the L1 cache; 8B/L is the number
of cache lines whose prefetching is initiated in one iteration;
T
PF

is the time taken by the prefetech instructions. For the
POWER7 processor, T

L1 = 2 cycles and T
PF

⇡ 36 cycles.
We avoid cache misses in the i loop by prefetching, so that

the actual time taken by one iteration of the loop is T
work

.
We implement prefetech-for-load with the L1 data cache-

block touch (DCBT) instruction and prefetech-for-store with
the L1 data cache-block set to zero (DCBZ) instruction [3].
The prefetch distance, D, is the di↵erence between the iter-
ation in which a cache line is used and the iteration in which
the prefetch of that line was launched. We have D = B for
DCBT, and D  B for DCBZ, so the number of concurrent
prefetch instructions, C, is C  8B/L⇥D = 8B2/L.

Little’s law gives T
prefetch

= �/C = (�⇥L)/(8B2), where
� is the memory latency. Prefetching occurs concurrently
with copying a[i][j] to aT [j][i]. If T

prefetch

 T
work

there
are no stalls and an iteration of the i loop takes T

work

. For
POWER7 � = 336 cycles, so T

work

= (25/4)B, T
prefetch

=
(336⇥16)/B2 and for B 2 {16, 32}, T

work

> T
prefetch

so the
time per iteration is T

ideal

= (25/4)B cycles. The iteration
that transposes the first block-row of block b+1 must wait for
all previously launched DCBZ instructions to take e↵ect, i.e.,
for all theB block-rows of block b+1 ofAT to arrive in the L1
cache. This iteration takes TS

iter

= �+T
L1�T

ideal

= (338�
25/4B) cycles. Out of B consecutive iterations of the i loop,
B�1 take T

ideal

cycles and one takes TS

iter

cycles, so the time
to transpose a block of A is T

block

= TS

iter

+ (B� 1)⇥ T
ideal

cycles. The time to transpose A is T
tr

= n2
B

⇥ T
block

. The
throughput of the transpose operation is the size of A plus
AT , 16n2, divided by T

tr

, i.e., BW = 16n2/T
tr

bytes/cycle.
The clock frequency of POWER7 is about 4 GHz, so we get:
(1) for B = 16, BW = 9.4 GB/sec; and (2) for B = 32,
BW = 10.3 GB/sec.

4. NUMERICAL EXPERIMENTS
POWER7 supports multiple page sizes and hardware

streams. A POWER7 system running the Linux kernel ver-
sion 2.6.35 supports two page sizes: 64 KB (default) and
16 MB. We control the hardware streaming with the data

streaming control register (DSCR): (1) DSCR=1, streams
are disabled; (2) DSCR=0, streams are enabled for load op-

erations only; and (3) DSCR=15, streams are enabled for
load and store operations. Hardware streams can be used
with or without software-based prefetching.

Figure 1: Memory bandwidth for B = 32 and page

sizes of 64 KB (top) and 16 MB (bottom)

Figure 1 shows that the large page size greatly improves
the bandwidth for large n because it reduces the TLB misses,
whose e↵ect is significant 64 KB pages. We see thatDSCR =
0 is better than DSCR = 15, so the hardware predicts bet-
ter the loads than the stores.

The ratio of the observed and projected performance is
70%, which means that the model is a good predictor if
we account for the machine overheads. The performance is
up to five times higher than that of the out-of-place ma-
trix transpose routine dgetmo of the IBM Engineering and
Scientific Subroutine Library (ESSL).

5. CONCLUSIONS
We have modeled cache blocking and prefetching for ma-

trix transpose in terms of the POWER7 cache organiza-
tion, memory access latency and concurrency. Based on
the model, we have designed a matrix transpose code whose
memory bandwidth is higher than that of the dgetmo rou-
tine. The full paper can be found in [2].

6. REFERENCES
[1] Kalla, R. Power7: IBM’s next-generation server

processor. Micro, IEEE 30, 2 (march-april 2010), 7 –15.
[2] Mateescu, G., Bauer, G. H., and Fiedler, R. A.

Optimizing matrix transposes using a POWER7 cache
model and explicit prefetching. SIGMETRICS

Performance Evaluation Review 40, 2 (2012).
[3] Power.org. Power ISA Version 2.06.

http://www.power.org/resources/downloads.
[4] Sinharoy, B. IBM POWER7 multicore server

processor. IBM Journal of Research and Development

55, 3 (2011), 1:1–1:29.


