
Predictive Modeling and Analysis of OP2 on Distributed
Memory GPU Clusters⇤

G.R. Mudalige, M.B. Giles
Oxford e-Research Centre, University of Oxford

mike.giles@maths.ox.ac.uk,
gihan.mudalige@oerc.ox.ac.uk

C. Bertolli, P.H.J Kelly
Dept. of Computing,

Imperial College London
{c.bertolli, p.kelly}@imperial.ac.uk

ABSTRACT
OP2 is an “active” library framework for the development
and solution of unstructured mesh-based applications. It
aims to decouple the scientific specification of an application
from its parallel implementation to achieve code longevity
and near-optimal performance through re-targeting the back-
end to di↵erent multi-core/many-core hardware. This paper
presents a summary of a predictive performance analysis
and benchmarking study of OP2 on heterogeneous cluster
systems. In this work, an industrial representative CFD ap-
plication written using the OP2 framework is benchmarked
during the solution of an unstructured mesh of 1.5M and
26M edges. Benchmark systems include a large-scale Cray
XE6 system and an Intel Westmere/InfiniBand cluster. Per-
formance modeling is then used to predict the application’s
performance on an NVIDIA Tesla C2070-based GPU clus-
ter, enabling the comparison of OP2’s performance capa-
bilities on emerging distributed memory heterogeneous sys-
tems. Results illustrate the performance benefits that can be
gained through many-core solutions both on single-node and
heterogeneous configurations in comparison to traditional
homogeneous cluster systems for this class of application.

Categories and Subject Descriptors
D.4.8 [Performance]

Keywords
OP2, Unstructured mesh, GPU, Performance modeling

1. INTRODUCTION
With heterogeneous HPC systems such as Tianhe-1A, Tsub-
ame and Nebulae gaining recognition as leading multi Peta-
FLOP systems [1], there appears to be an increasing trend
in using many-core processor architectures in a hybrid com-
bination with traditional CPUs. On the other hand, ho-
mogeneous systems such as the K-Computer and Jaguar,
based on traditional multi-core CPU hardware, appear to
be defending their dominant positions as the top performing
systems in the world. Other systems architectures, such as
the IBM BlueGene range follow a di↵erent“many-core”path

⇤This research is funded by the UK Technology Strategy
Board and Rolls-Royce plc. through the Siloet project, and
the UK Engineering and Physical Sciences Research Coun-
cil projects EP/I006079/1, EP/I00677X/1 on Multi-layered
Abstractions for PDEs.

Copyright is held by the author/owner(s).

PMBS’11, November 13, 2011, Seattle, Washington, USA.

ACM 978-1-4503-1102-1/11/11.

with massively parallel quantities of independently operat-
ing low-speed cores interconnected by high-speed networks.
As the many-core vs multi-core debate rages on, technologies
that enable users to e�ciently exploit these systems appear
to be in an ever increasing state of flux, with a range of
competing programming languages and architectural opti-
mizations/configurations. Application developers will need
to constantly keep up an expert level of knowledge in the in-
tricate details of new technologies and architectures in order
to obtain the best performance from their codes.

The demand of maintaining such a programming skills-
set is distracting domain application developers from invest-
ing their full intellectual e↵orts in the scientific/engineering
problems they are solving. It is clear that a level of ab-
straction must be achieved so that computational scientists
can increase their productivity by focusing on solving prob-
lems at a higher level, write code that remains unchanged
for di↵erent underlying hardware and not worry about ar-
chitecture specific optimizations. At the same time, a lower
implementation level, maintained by HPC technology pro-
fessionals and optimization experts, can focus on how a com-
putation can be executed most e�ciently on a given platform
by carefully analyzing the computation and data access pat-
terns. This paves the way for easily integrating support for
any future novel hardware architecture and maintain near
optimal performance.

OP2 aims to provide such an abstraction layer, by de-
veloping an “active” library framework for the solution of
unstructured mesh applications. The “active” library ap-
proach uses program transformation tools, so that a single
application code written using the OP2 API is transformed
into the appropriate form that can be linked against a given
parallel implementation (e.g. OpenMP, CUDA, OpenCL,
SSE/AVX, MPI, etc.) enabling execution on di↵erent back-
end hardware platforms. At the same time, OP2 attempts to
maintain near-optimal performance by exploiting low-level
optimizations and/or configurations on a target platform
without the intervention of the application programmer.

OP2 currently enables application developers to write a
single program (using the OP2 API, in either C/C++ or For-
tran) which can then be transformed (using OP2 code trans-
formation tools) into executables for three di↵erent plat-
forms: (1) single-threaded on a CPU, (2) multi-threaded
using OpenMP for execution on a single multi-core CPU (in-
cluding on an SMP or a large shared-memory node) and (3)
parallelized using CUDA for execution on a single NVIDIA
GPU. In our previous work [4, 2] we have presented the de-
sign and implementation of OP2 for single node systems and



Table 1: Airfoil run-times comparison
Node System Cores /node Memory Run-time

(Clk/core) /node (seconds)
2⇥Intel Xeon 12 (24 SMT) 24 GB 37.89

X5650 (Westmere) (2.67GHz) (24 OMP)
2⇥AMD Opteron 16 12 GB 46.30

6128 (Magny Cours) (2.0GHz) (16 OMP)
GeForce GTX560Ti 384 (1.6GHz) 1.0 GB 19.63

Tesla C2070 448 (1.15GHz) 6.0 GB 13.20
72 cores 13.22

HECToR 480 cores 2.09
(Cray XE6) 960 cores 1.12

CX1 36 cores 20.66
(Intel Westmere 60 cores 12.29
/InfiniBand) 120 cores 6.07

benchmarked an industrial representative application writ-
ten using the OP2 library on a range of flagship single node
systems, consisting of NVIDIA GPUs and x86 based multi-
core CPUs. The next step of the OP2 development is to
facilitate code generation and execution on heterogeneous
systems such as clusters of single/multi-threaded CPUs or
GPUs. The objective is to layer distributed memory par-
allelization in combination with any intra-node paralleliza-
tion technologies (OpenMP, CUDA, etc.). This short paper
summarizes results from an early performance evaluation of
OP2’s distributed memory capabilities for such systems; the
full paper can be found in [5]. Utilizing a recently developed
distributed memory back-end layer based on MPI, its per-
formance on a number of homogeneous cluster systems to-
gether with performance modeling techniques we present an
“ahead of implementation” predictive performance analysis
for a cluster of GPUs. Our objective is to gain quantitative
and qualitative insights into the achievable performance on
such systems and contrast it with performance from single-
node and traditional homogeneous cluster solutions for un-
structured mesh based applications.

2. RESULTS
Table 1 presents best run-times of an industrial repre-

sentative CFD application (Airfoil [3]), written using OP2
on an number of single node and distributed memory sys-
tems. The application in this case is solving a mesh with ap-
proximately 1.5 million edges. The GPUs execute NVIDIA
CUDA code generated by the OP2 framework, while the
Westmere and Opteron multi-core CPUs utilize OpenMP
generated by OP2. The executables on the CrayXE6 and the
Westmere/InfiniBand cluster run under MPI also generated
by OP2. The best run-time with OpenMP (37.89 seconds)
on the Westmere processor node (compiled with icc -O2 -
xSSE4.2) was obtained by executing 24 OpenMP threads
on 12 symmetric multi-threading (SMT) enabled cores.

On the Opteron processor node, the best run-time (46.30
seconds) was gained with 16 OpenMP threads (compiled
with icc -O2 -ipo -xSSE2 -funroll-loops). The GPU results
give a best runtime of 19.63 seconds and 13.20 seconds on
the GTX560Ti and the Tesla C2070 respectively. These are
speedups of 1.93⇥ and 2.8⇥ respectively, compared to the
Intel Westmere processor node with 24 OpenMP threads on
12 (SMT) cores. In contrast we see that the performance of
Airfoil on HECToR with 72 cores (3 nodes) and CX1 with
60 cores (5 nodes) is approximately equivalent to the perfor-
mance of one C2070 GPU. Considerable performance gains
(not to mention power and cooling savings) can be achieved
even on a single consumer-grade GTX560Ti (equivalent to
approximately 36 Westmere cores) for this application.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Number of nodes

CX1 Pred.
HECToR Actu.
HECToR Pred.

C2070 cluster Pred.

Figure 1: Airfoil - 26M edge mesh: HECToR - 24
cores/node, CX1 - 12 cores/node, C2070 cluster - 1
GPU/node

Figure 1 presents projected performance from a perfor-
mance model of Airfoil, on CX1 and a hypothetical NVIDIA
Tesla C2070 GPU cluster at scale. Actual run times from
HECToR are also provided as a reference. The application
in this case is solving a larger 26 Million edge mesh. We
see a C2070 cluster to give the same performance that is
equivalent to performance given by traditional homogeneous
clusters that are more than three times its size.

3. CONCLUSION
The Airfoil unstructured mesh application benchmarked in
this work shows up to 3⇥ speedup on current flagship GPUs
compared to their equivalent multi-core CPU counterparts.
Our experiments show that this holds true compared to both
single node CPUs utilizing thread-level parallelism (OpenMP)
as well as traditional homogeneous distributed memory clus-
ters (single threaded CPU clusters). On a heterogeneous
cluster system, we expect such applications to exhibit simi-
lar performance gains given that the individual GPU nodes
do not exhaust their resources during the solution of a given
workload. On the other hand, our performance modeling
predicts that the limiting factor in scalability is not pri-
marily the PCIe or MPI/InfiniBand overheads, particularly
when non-blocking operations are used to hide communica-
tion costs. Scalability is a↵ected more by the amount of
parallelism available per partition to be exploited by each
GPU at scale. Thus a balance must be achieved to not over-
load the resources of individual GPUs but at the same time
have enough computation that can be parallelized within a
node to gain good performance. The full paper can be found
in [5].

4. REFERENCES
[1] Top500 Systems, June 2011.

http://www.top500.org/list/2011/06/100.
[2] Giles, M., et. al Performance analysis and optimization of

the OP2 framework on many-core architectures. The

Computer Journal (2011).
[3] Giles, M. B., Ghate, D., and Duta, M. C. Using

automatic di↵erentiation for adjoint CFD code development.
Computational Fluid Dynamics Journal 16, 4 (2008),
434–443.

[4] Giles, M. B., Mudalige, G. R., Sharif, Z., Markall, G.,
and Kelly, P. H. Performance analysis of the OP2
framework on many-core architectures. SIGMETRICS

Performance Evaluation Review 38(4) (2011), 9–15.
[5] Mudalige, G. R., Giles, M. B., Bertolli, C., and Kelly,

P. H. Predictive Modeling and Analysis of OP2 on
Distributed Memory GPU Clusters. SIGMETRICS

Performance Evaluation Review 40(2) (2012)


